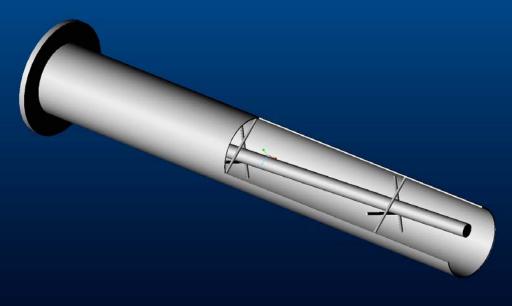


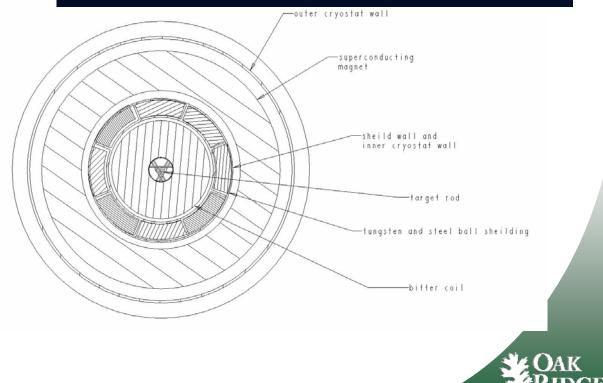
Review of NFMCC Studies 1 and 2: Target Support Facilities

V.B. Graves

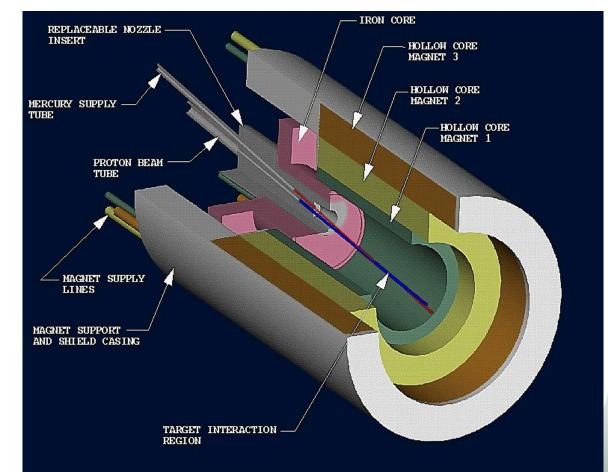
Meeting on High Power Targets University of Oxford May 1-2, 2008

Oak Ridge National Laboratory U. S. Department of Energy

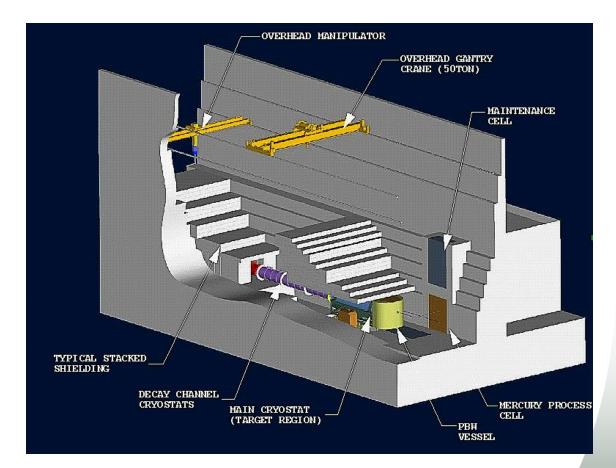

Neutrino Factory Studies


- ORNL completed two studies describing support facilities for neutrino factories
 - 2000, Graphite Target
 - 2001, Mercury Jet Target
 - Included descriptions of targets, expected radiation, required shielding, remote handling systems, and rough cost estimates
- ORNL documents used as contributions to broader scope NFMCC documents

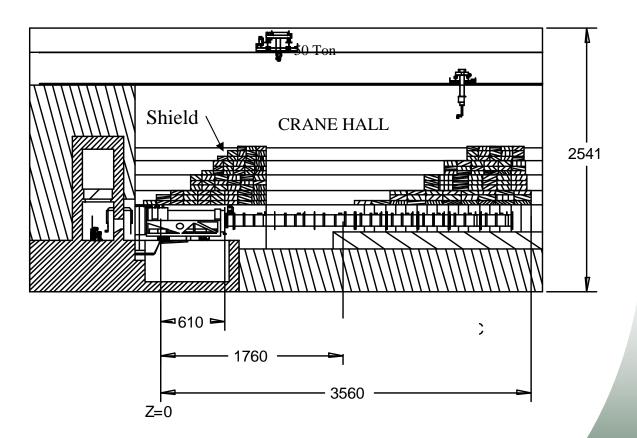
Study 1 - Carbon Target


- 16 GeV, 1.5 MW proton beam
- 1.5 cm diameter, 80 cm long graphite rod inside a helium environment
- Target held by two spoke-like graphite supports
- 15 cm diameter containment tube
- 20 T magnetic field

Study 2 – Mercury Jet Target

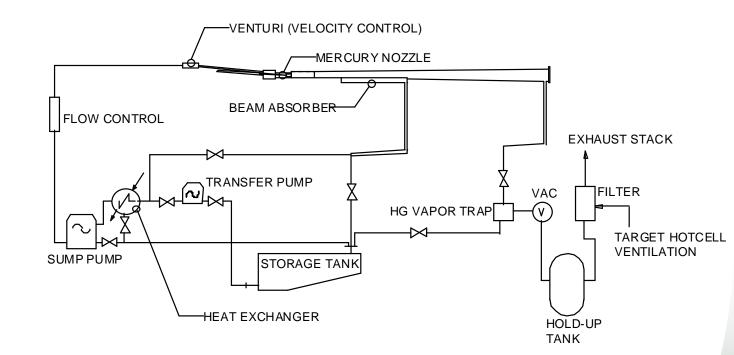

- 24 GeV, 1 MW proton beam
- 1 cm diameter, 30 m/s jet
- 20 T magnetic field
- Removable nozzle assembly inside an iron core

Study 2 Target-Capture Facility

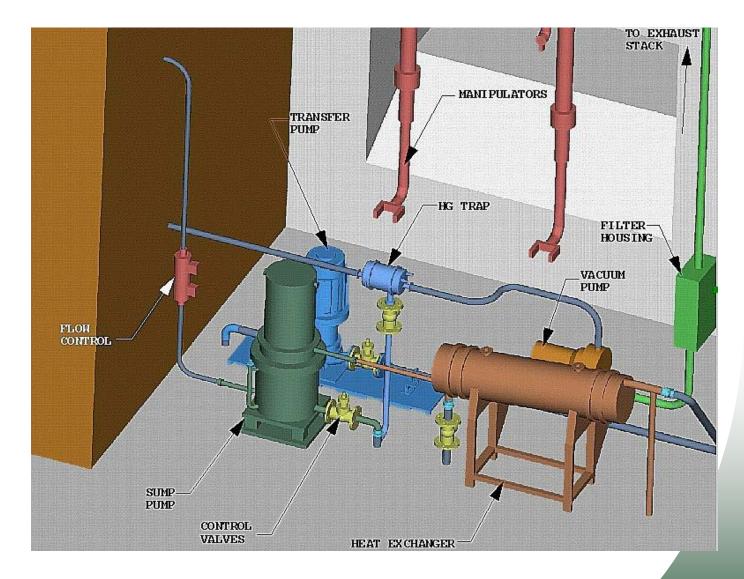

- 24 GeV, 1 MW proton beam on Hg target
- Upgradeable to 4 MW
- 20 T target solenoids
- 1.25 T capture solenoids
- 5-m steel shield for unlimited personnel access
- Facility concept
 development
 - Beam, target parameters
 - Neutronic analysis
 - Shielding requirements
 - Equipment definition
 - RH requirements, crane sizing
 - Cost estimate

The Target/Capture Facility is 40-m Long

- Removable, stacked shielding allows personnel in the crane hall
- 50-ton crane and bridge manipulator are the primary remote handling tools



6 Managed by UT-Battelle for the Department of Energy

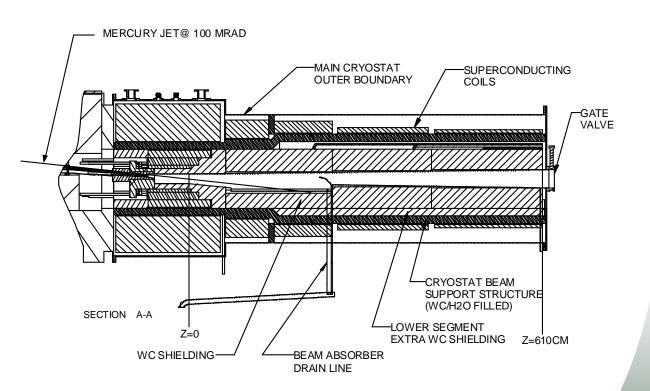

Hg-Jet Target/Beam Absorber is a Closed Loop System

- Hg jet interaction region: r = 5 mm x 30 cm long
- 110 liters of Hg total volume
- V = 30 meters/s
- Q = 2.4 liters/s

Hg-Target Hot Cell

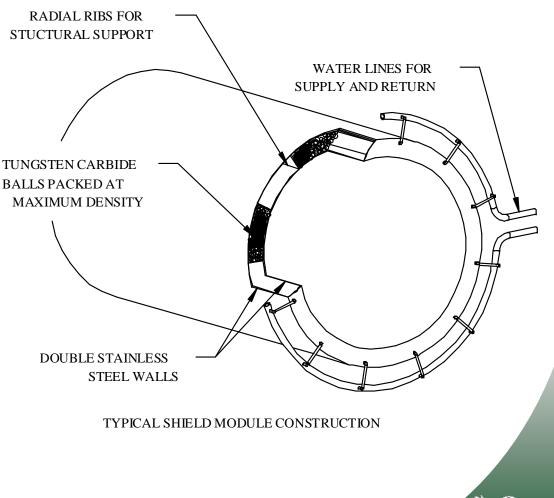
 All components can be remotely replaced

Maintenance requirements for the target system components


- Most of the target system components are life-of-the-facility
- Key components are replaced every 2-3 yrs

Component (Class)	Failure Mode	Dose Rate (Rad/h)	Expected Life (yrs)	Replacement Time (days)
Nozzle Insert	erosion, embrittled beam window	>10 ⁶	2-3	11-16
Beryllium Window	embrittlement	$10^4 - 10^5$	2	7-11
Isolation Valve	mechanical	$10^4 - 10^5$	5-7	1-2 (plus time for beryllium window repl.)
Filters	saturated	Contamin ation	2	2-3
Pumps, Valves	mechanical	Contamin ation	5-7	2-3
Heat Exchanger, Piping, Tanks	mechanical	Contamin ation	>40	5-8

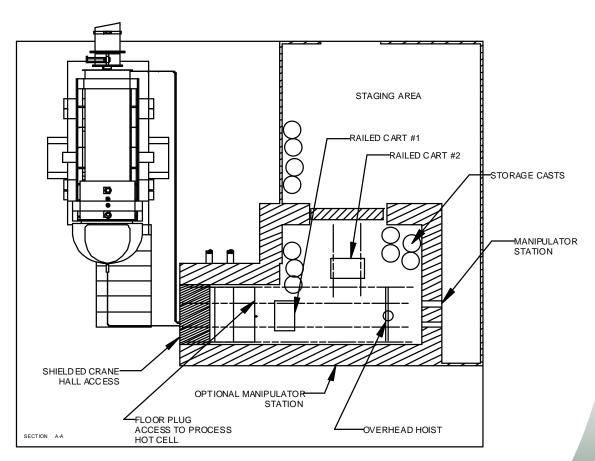
The Target and High Field Solenoids Are Contained in a Common Cryostat


- The cryostat is a trunnion-mounted beam that simplifies initial installation of coil modules
- The resistive coils and target nozzle are mounted coaxially in the large SC solenoid

Tungsten-Carbide Radiation Shielding Protects the Superconducting Coils

- Solenoids are lifetime components
- W-C balls are 2-6 mm diam.
- Water-cooled flow channels
- Stainless steel shell and rib design

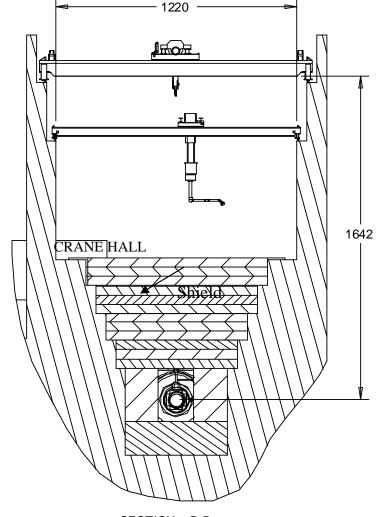
Component Weights and Sizes


 Weight and size of major components established the facility dimensions and lifting requirements

Component	Outer Diam. (cm) Length (cm)	Module Wt. (lb)
Resistive Module	110	180	47,500
Iron Plug	-	-	-
HC1	_	-	-
HC2	_	-	-
HC3	_	_	-
W-C Shield	_	_	-
lain Cryostat + Shield Bea	am 270	740	73,600
SC1	256	178	61,000
SC2-3	202	183	21,700
2-3 Shield	128	183	59,600
SC4-5	176	351	17,900
4-5 Shield	148	351	86,400
SC6 + Shield	104	50	<4,000
SC7 + Shield	104	185	11,800
SC8 + Shield	104	185	10,800
SC9 + Shield	104	185	9,600
SC10 + Shield	104	185	8,400
SC11 + Shield	104	185	7,700
SC12 + Shield	104	185	6,600
Decay Coils + Shield (6)		296	12,600

The Maintenance Cell is Located on the Crane Hall Level

- Sized for handling cryostat modules
- Located above the target hot cell with a hatch access
- Staging area for bringing new components into the crane hall
- Waste handling area


Maintenance Cell Plan View

13 Managed by UT-Battelle for the Department of Energy

Unlimited Personnel Access is Permitted in the Crane Hall

- 5.2 meters of steel + 30 cm of concrete to limit worker dose to 0.0025 mSv (0.25 mrem/h)
- 2 meters of steel in the tunnel to meet ground water protection requirements

SECTION B-B DECAY CHANNEL SHIELDING

R&D Issues Identified

• Graphite target

- Detailed target design
- Beam dump design, incl. coolant connections/piping
- Utility connections in target region
- Details for helium environment, purge air
- Mercury jet target
 - Thermal mixing of pool by jet
 - Nozzle erosion

Shielding for high-field solenoids (W-C spheres)

- Ball distribution
- Pressure drop
- Heat transfer coefficient

Summary

- Previous studies provided concepts for Target Support Facilities based on graphite and mercury jet targets
- A logical method was used to determine facility size
 - The facilities were based on size and weight of the solenoids and the radiation shielding that protects the superconducting coils
 - Rad shielding was sized to permit unlimited worker access in the crane hall
 - The decay channel (tunnel) is shielded to meet ground water protection requirements
- Remote handling systems were incorporated into the facility design even at the early conceptual stage

