

Mercury Delivery System Issues

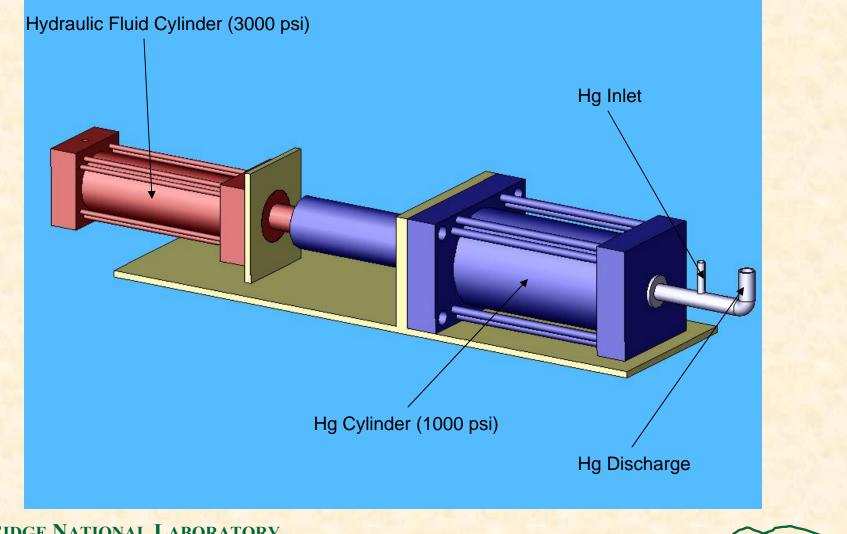
Van Graves Tony Gabriel, Phil Spampinato Targetry Teleconference 21 Dec 2004

> OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY

Pump Heat Issues

Per centrifugal pump vendor

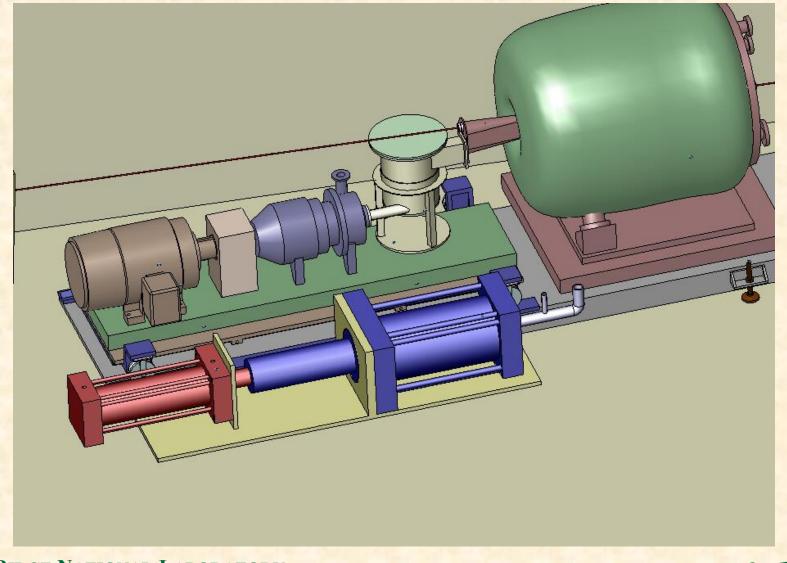
- Pump efficiency 23%
- Heat energy into mercury is 40.5hp (30kw)
 - With Vol=12liter, ΔT=2.4°F/sec (1.3°C/sec)


Possible solutions

- Increase Hg volume (ΔT decreases linearly with Hg mass)
- Add heat exchanger for system testing
 - Perhaps not needed during CERN tests
- Investigate alternative Hg delivery systems
 - Experiment lends itself to non-continuous flow approach

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Mercury Syringe Concept



OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Targetry Teleconference - 21 Dec 2004

Syringe Layout

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Targetry Teleconference - 21 Dec 2004

Syringe Performance Benefits

- Piston-driven jet is unaffected by pressure drops in downstream piping
 - Nozzle/piping changes will not affect Hg delivery ability
 - Jet characteristics should be identical in both high field & no field conditions
- Piston will be nearly 100% efficient
 - No significant heat imparted to Hg by piston

Other Benefits

- No heat exchanger required
- Syringe design may be smaller than shown, depending on Hg volume required
 - 25gpm -> 50 liter for 30sec, 25 liter for 15sec
 - Concept shown is for 30sec jet
- Lower power requirements
 - Initial vendor discussions estimate 20hp
- No added controls issue with this approach
- Initial estimate indicates syringe cost may be much less than pump system, esp. if nonstainless cylinders can be used

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Hg Delivery System Comparison

Attribute	Pump	Syringe	Attribute	Pump	Syringe
Continuous Flow	\checkmark		Size		$\sqrt{*}$
Hg Inventory	$\sqrt{*}$		Power Requirements		\checkmark
Piping Loss Effects		\checkmark	No Heat Exchanger		\checkmark
Jet Consistency In/Out of Field		\checkmark	Controls Complexity		
Hg Temp Rise			Cost		\checkmark
Magnetic Field Effects		\checkmark			

* Depending on design

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Targetry Teleconference - 21 Dec 2004

Basic Questions / Issues

Jet duration directly affects required Hg volume

- Initial sizing based on 30 sec jet
- 15T field duration is only 1 sec

Hydraulics in tunnel

- What fluids are acceptable (flammability)?

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Targetry Teleconference – 21 Dec 2004

Recommendations

 Change baseline Hg delivery system to hydraulic cylinder

Set required jet duration to 10-15 sec

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Targetry Teleconference – 21 Dec 2004