

Mercury Delivery System Issues

Van Graves Tony Gabriel, Phil Spampinato Targetry Teleconference 13 Jan 2005

> OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY

Pump Issues

Pump adds heat to Hg

- Pump delivers nominal 51 bhp at 23% efficiency (60 bhp max)
- Magnetic coupling losses 5.4 hp
- Heat energy into mercury
 - (bhp mag)*(1 eff) + mag = 40.5hp (30kw)
 - With Vol=12liter, ΔT=2.4°F/sec (1.3°C/sec) due to pump heating only

 Max available pump output pressure is 750 psi (50 bar)

- Total system pressure drop 800-850 psi

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Pump Energy Balance

Pump				Heat Direct to Tunnel	Heat Input to Hg	Flow Losses	Total Heat Generated		Energy to Hg	Hg Temp Rise	
	Input Energy (hp)	Losses	Lost Energy (hp)	Output Energy (hp)	BTU/min	BTU/min	BTU/min	BTU/ min	KW HI	P BTU/min	°F/sec
Elect Motor	60	60 hp * 5% inefficiency	3	57	127	895		127	2 3		100
Mag Coupling	-	5.4hp actual coupling loss per vendor data	5.4	51.6	229			229	4 5	1.	
Hg Pump	2.7	40.5hp actual pump loss per vendor data	40.5	11.1		1719		1719	30 40	1719	
Hg Flow		800psi*25gpm	12	-1			526	526	9 12	2 526	
				Totals	356	1719	52 <mark>6</mark>	2601	46 6 ⁻	2245	3.1

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

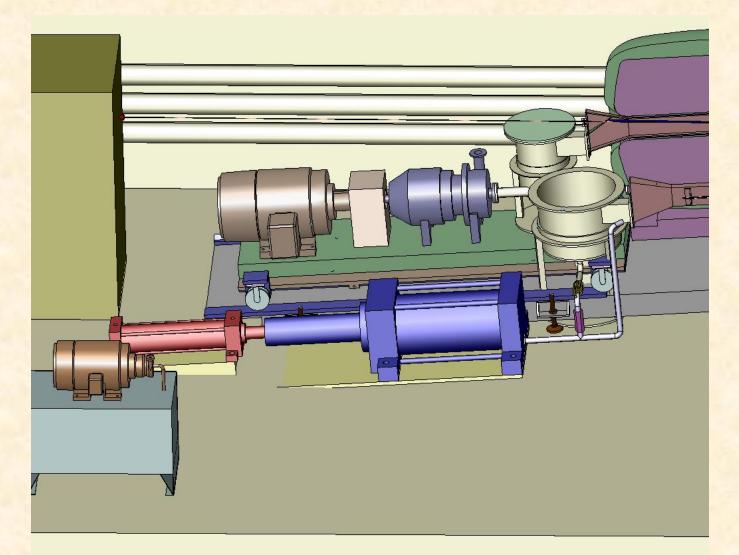
Possible Solutions

Heat issue


- Increase Hg volume (ΔT decreases linearly with Hg mass)
- Add heat exchanger for system testing
- Perhaps not needed during CERN tests

Capacity issue

- Investigate alternative Hg delivery systems
- Experiment lends itself to non-continuous flow approach


Mercury Syringe Concept

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Syringe Size Comparison

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Syringe Performance Benefits

- Piston-driven jet has excess capacity to overcome flow losses
 - Minor nozzle/piping changes will not affect Hg delivery ability
 - Jet characteristics should be identical in both high field & no field conditions

No significant heat imparted to Hg by piston

- Heat losses isolated to hydraulic system
- Flow losses identical to those in pump system

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

System Energy Comparison

Pump					Heat Direct to Tunnel	Heat Input to Hg	Flow Losses		l Heat erated		Energy to Hg	Hg Temp Rise
E	Input inergy (hp)	Losses	Lost Energy (hp)	Output Energy (hp)	BTU/min	BTU/min	BTU/min	BTU/ min	KW H	ΗP	BTU/min	°F/sec
Elect Motor	60	60 hp * 5% inefficiency	3	57	127			127	2	3		
Mag Coupling		5.4hp actual coupling loss per vendor data	5.4	51.6	229		-	229	4	5		
Hg Pump		40.5hp actual pump loss per vendor data	40.5	11.1		1719		1719	30 4	40	1719	100
Hg Flow		800psi*25gpm	12	-1	L.		526	526	9	12	526	-
				Totals	356	1719	526	2601	46	61	2245	3.1
Syringe	1	Sec. 1. 19										
Elect Motor	20	20 hp * 5% inefficiency	1	19	42	2.5		42	1	1	100	1.2
Hyd Pump		energy performed on piston = press*area*dist/time	11	4.57								
Hyd Pump		pump inefficiency	8	11	340			340	6	8		1000
Piston Energy to	Hg	no losses		11								100
Hg Flow		800psi*25gpm	12	-1			526	526	9	12	526	
00			6.01	Totals	382		526	908	16	21	526	0.7

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Other Syringe Benefits

- No heat exchanger required
- Syringe design may be smaller than shown, depending on Hg volume required
 - 25gpm -> 50 liter for 30sec, 25 liter for 15sec
 - Concept shown is sized for 30sec jet
- Lower power requirements
 - Initial vendor discussions estimate 20hp
- No added controls issues with this approach
- Initial estimate indicates syringe system cost may be much less than pump system

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Hg Delivery System Comparison

Attribute	Pump	Syringe	Attribute	Pump	Syringe
Continuous Flow	\checkmark		Size		$\sqrt{*}$
Hg Inventory	$\sqrt{*}$		Power Requirements		\checkmark
Piping Loss Effects		\checkmark	No Heat Exchanger		\checkmark
Jet Consistency In/Out of Field		\checkmark	Controls Complexity		
Hg Temp Rise			Cost		

* Depending on design

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Basic Questions / Issues

Jet duration directly affects required Hg volume

- Initial sizing based on 30 sec jet
- 15T field duration is only 1 sec

Hydraulics in tunnel

- Petroleum, mineral oil, vegetable oil, water/glycol
- What fluids are acceptable (flammability)?

Recommendations

 Change baseline Hg delivery system to hydraulic cylinder

Set required jet duration to 10-15 sec

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

