SC Magnet Shielding

Cale Caldwell Van Graves

IDS-NF Phone Meeting April 6, 2010

General Target Concept

for the U.S. Department of Energy

SC Magnet Shielding 6 Apr 2010

National Laboratory

Study 2 Energy Deposition (Table 3.5)

- SC shielding absorbs ~60% of beam power (589kW for 1MW beam)
- Value confirmed by more recent studies

101C 0.0. L	nergy deposition by een in the	target system.	(A) Stands	101 ~10
Cell	Description	Energy Deposition		
Number		(Mev/gm-p)	(W/cm^3)	(kW)
8	Surrounding shield	3.11(-4)	0.16	589
12	Primary mercury target	2.62	1.48(3)	53.1
2	Coaxial shield around target	1.55(-3)	0.82	40.4
3	Iron plug behind target	1.21(-3)	0.39	0.99
81	First coaxial magnet	2.61(-4)	0.08	3.54
82	Second coaxial magnet	1.04(-4)	0.03	4.43
83	Third coaxial magnet	2.38(-5)	0.01	1.70
91	Mercury beam stop	6.04(-4)	0.34	1.07
92	Mercury beam stop	8.64(-4)	0.49	2.55
93	Mercury beam stop	1.13(-3)	0.64	4.01
94	Mercury beam stop	4.80(-4)	0.27	1.20
95	Mercury beam stop	4.42(-4)	0.25	1.57
96	Mercury beam stop	4.89(-4)	0.28	1.74
97	Mercury beam stop	5.34(-4)	0.30	1.89
98	Mercury beam stop	6.87(-4)	0.39	2.44
99	Mercury beam stop	6.61(-4)	0.37	2.35
100	Mercury beam stop	4.86(-4)	0.27	1.73
101	Mercury beam stop	3.65(-4)	0.21	0.93

Table 3.5: Energy deposition by cell in the target system. (x) stands for $\times 10^{x}$.

3 Managed by UT-Battelle for the U.S. Department of Energy

Shielding Geometry

- Baseline concept is water-cooled Tungsten spheres
 - Unknown heat transfer coefficient
 - Unknown packing factor
- Geometry
 - ID = 70cm, OD=114cm, thickness=22cm
 - Length =5m
 - Less thickness available at up-beam end due to resistive magnets
- Can this geometry remove 600kW heat energy?
 - 2.3MW for 4MW beam???

First Approximation Heat Transfer

- Assume solid tungsten cylinder with internal water tubes, single pass water flow
- Q=**m***c_p*(To-Ti)
 - Q=600kW
 - $c_{p} = 4186 J/kg^{*}K$

Using water as the coolant and assuming 600kW of heat generated, the required flow rate is $1.4 \text{ m}^3/\text{s}$.

Flow Distribution

- The large flow rate can be distributed into 1 cm tubes.
- 152 tubes are required to achieve the necessary flow rate.
 - q = 570 liters/min (150gpm) per tube
 - v = 120 m/sec, not feasible
- 11cm of Tungsten allows enough room for the cooling tubes, while 82% of the cross-sectional area is Tungsten.
 - Reduces effective shielding density

6 Managed by UT-Battelle for the U.S. Department of Energy

SC Magnet Shielding 6 Apr 2010

Issues/Next Steps

- Further analysis needed for this case
- More sophisticated analysis needed for spheres
- Look at mercury as a shield/coolant
- Recalculate for 4-MW beam