

CERN Hg Jet System

V.B. Graves P.T. Spampinato T.A. Gabriel

MUON Collaboration Meeting

Lawrence Berkeley National Laboratory February 16, 2005

> OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Outline

- Requirements / constraints
- Original Hg delivery concept & issues
- New baseline delivery system
- Operations / Hg handling
- Schedule

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Design Requirements & Constraints

- Hg Jet
 - 1cm dia, 20m/s (1.57 liter/s, 24.9 gpm) in same direction as beam
 - Free jet created inside 15cm magnet bore
 - Smooth, steady-state jet duration overlaps 1-sec max field duration
- Integrate optical diagnostics
 - Fiber-optic system integrated with 5K frames/sec camera to record jet/beam interaction
- 40-100 beam shots over 1 week period
 - Period between beam shots approximately 30 minutes to allow magnet cooling
- No target equipment on up-beam end of magnet
- Materials compatibility with Hg
- Component module size limitation is 1.3m x 3m (facility issues)

Experiment Geometric Configuration

Experiment is prototypic of a N.F. facility target layout

- Magnet tilt (wrt beam) = 66 mrad (3.8°)
- Hg jet tilt (wrt magnet axis) = 100 mrad (5.7°)
- Hg jet center intersects beam center at Z=0

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

U. S. DEPARTMENT OF ENERGY

JT-BATTELLE

System Overview

Intermediate Beam Stop

U. S. DEPARTMENT OF ENERGY

Original Hg Delivery System

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Pump Issues

Pump adds heat to Hg

- Pump delivers nominal 51 bhp at 23% efficiency (60 bhp max)
- Magnetic coupling losses 5.4 hp
- Heat energy into mercury
 - LostHP = (bhp mag)*(1 eff) + mag = 40.5 hp (30kw)
 - With an assumed Vol=12liter, ΔT=2.4°F/sec (1.3°C/sec) due to pump heating only
 - Heat exchanger might be required

 Max available pump output pressure is 750 psi (50 bar)

- Estimated piping system pressure drop 800-850 psi

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Alternative Hg Delivery System

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

System Energy Comparison

Pump					Heat Direct to Tunnel	Heat Input to Hg	Flow Losses	Tota Gen	al Heat erated	Energy to Hg	Hg Temp Rise
	Input Energy (hp)	Losses	Lost Energy (hp)	Output Energy (hp)	BTU/min	BTU/min	BTU/min	BTU/ min	KW HP	BTU/min	°F/sec
Elect Motor	60	60 hp * 5% inefficiency	3	57	127			127	2 3		
Mag Coupling		5.4hp actual coupling loss per vendor data	5.4	51.6	229			229	4 5		2
Hg Pump		40.5hp actual pump loss per vendor data	40.5	11.1		1719		1719	30 40	1719	125
Hg Flow		800psi*25gpm	12	-1	10.00		526	526	9 12	526	
1.154				Totals	356	1719	526	2601	46 61	2245	3.1
Syringe							14				
Elect Motor	20	20 hp * 5% inefficiency	1	19	42	2.16		42	1 1	10.3	
Hyd Pump		energy performed on piston = press*area*dist/time	11						1		
Hyd Pump		pump inefficiency	8	11	340	and a		340	6 8		180
Piston Energy to Hg		no losses		11							
Hg Flow		800psi*25gpm	12	-1			526	526	9 12	526	
			1	Totals	382		526	908	16 21	526	0.7

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Primary Containment

Hg Plenum

- Purpose is to provide reservoir to allow Hg to change direction in confined space
- Several designs have been considered
- Open chamber with nozzle exit and beam thru-tube

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Primary Containment - Side View

Secondary Containment

- SS sheet metal enclosure around entire primary system
- Contains Hg leaks, provides access to monitor Hg vapors
- Provides access to optical diagnostics, hydraulics, and sensors
- Incorporates beam windows
- 3 components: hydraulics box, target cover, connecting rubber sleeve

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

New Baseline Hg Target System

- Secondary tank dimensions 102x36x45" (2.6x0.9x1.1m) without support base
- Need to reduce footprint
 - Facility limits are 3m x 1.3m

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Syringe Layout

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Title 1 Design Review Comments

- Nozzle design
 - More analysis needed
 - Nozzle/deflector designs need validation
 - Replaceable or adjustable nozzle
- Viewports
 - Structural rigidity of viewport optics
 - May require testing
- System sizing
 - Footprint for 20sec syringe too large
 - Increase cylinder diameter (from 8" to 12") to decrease required stroke
- Add filtered breather system to primary containment
- Clarify CERN facility requirements
 - Operational logistics affect system design
 - Prepare failure analysis

Hg Cylinder Upsizing

Original: 8" Hg cylinder Updated: 12" Hg cylinder Both with 20sec capacity

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Hg Handling Issues

Properties, Safety Limits, Standards

- Atomic Weight: 200.59
- Boiling Point: 357 degree C
- Specific Gravity: 13.6
- Vapor Pressure: 0.0012 mm Hg
- Vapors: colorless, odorless
- Solubility: insoluble in water
- NIOSH/OSHA limits: 0.05 mg/m³, 10 h/day; 40 h/wk
 - ORNL: 0.025 mg/m³, respirators at 0.012 mg/m³

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

The Target Test Facility (TTF) - Basis For ORNL's Hg Handling Experience

- Full scale, prototype of SNS Hg flow loop
- 1400 liters of Hg
- Used to determine flow characteristics
- Develop hands on operating experience
- Assess key remote handling design issues

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

TTF Pump Room and Target Room

- 75 Hp centrifugal pump
- Nominal flow at 1450 liters/min (380 gpm)
- Completed several major equipment upgrades for piping and target configuration

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Hg Transfer

TTF vacuum pump was used to transfer Hg directly into the storage tank

- Lower risk than manual loading or using a pump
- Faster operation, ~ 1-1/2 minutes per flask (over 500 flasks required for TTF)

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Proper PPE Is Mandatory

 Overalls, gloves, and overshoes are the minimum requirement, respirators used if indicated by Hg vapor monitoring

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Mercury Puddling

 Mercury will collect into small droplets and large puddles even in pipes sloped at 1 degree

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Mercury Monitoring

- TTF Uses Three Stationary Jerome 431-X Vapor Analyzers
 - One monitor dedicated to each room and exhaust vent, connected to the Target Test Facility PLC
 - A portable monitor used during loop maintenance activities
- The Jerome analyzer has a range of 0.000 0.999 mg/m³
 - Sensitivity is 0.003 mg/m³
 - Measures the change in resistance across a gold film as a function of Hg vapor
- Other monitor types are available

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Equipment Decommissioning/Disposal

- The target equipment (and the solenoid) will have neutroninduced activation
- Based on (H. Kirk 9/01/04)
 - 200 pulses
 - 16 x 10¹² protons/pulse (avg.)
 - 30 days of operation
- Contact dose rate on the iron exterior will be:
 - after 1 hr 40 mrad/hr
 - after 1 day 21 mrad/hr
 - after 1 week 13 mrad/hr
 - after 1 mo. 5 mrad/hr
 - after 1 year 1 mrad/hr
- ORNL will take back the Hg target system and dispose of activated Hg and components
- Magnet, power supply, and cryosystem should be available for other uses ... may be sent to KEK

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Hg Target Schedule Highlights

Title 1 Design Review at ORNL

Collaboration Mtg at CERN

Title 2 Design Review

Target System Procurement & Fabrication (dependent on funding)

Assembly & Testing at ORNL

Integrated Testing w/Magnet

Equip. Installation at CERN

Earliest Beam-on Tests at CERN (no beam time scheduled yet)

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Feb 7-8, 2005

Mar 15-17, 2005

May-June '05

July '05 - Oct '05

Nov '05 – Jan '06

Feb '06 – Apr '06

Oct '06 - Nov '06

Dec '06

