

High Power Hg Target Conceptual Design Review

Hg Target Interface with Solenoid

V.B. Graves
P.T. Spampinato
T.A. Gabriel

Oak Ridge National Laboratory February 7-8, 2005

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Outline

- Target module insertion
- Solenoid thermal insulation
- Solenoid operational cycle
- Solenoid orientation changes
- Field plots
- Solenoid / target base support structures

Target Module Insertion

- Primary and secondary containment mechanically fastened (weight ~ 160 lbs)
- Flexible metal hoses probably already attached
- Can be inserted either before magnet aligned to beam or after

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Solenoid Thermal Insulation

- Original solenoid design incorporated insulating bore tube (G-10)
- Removal of G-10 tube provided more room for target module components
- Insulation replaced by addition of flexible foil heater (silicone or kapton) 0.007" – 0.060" thick outside the secondary tube
- May only need on one end of secondary containment tube
- Requires controllable power supply

Magnet Operational Cycle

Bob Weggel's 10-14 analysis of the LN2 magnet operation

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Magnet Positional Changes During Max Field

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Consequences of Magnet Movement

- Vertical movement summary
 - Upbeam end: -3 mm
 - Downbeam end: +1.2 mm
 - Z=0 position: -0.9 mm
 - 3.5mrad tilt over assumed 1200mm length
 - Position of zero vertical movement at Z=+257mm
- No compensation in design (nozzle position) for Z=0 movement
- Actual movements to be measured during solenoid testing

Design Alternatives

- Magnet movement must be accommodated by target system
 - Target can float within magnet or be small enough that movement does not produce contact
- Space constraints within target secondary containment push toward maximizing secondary diameter and floating with magnet
 - Tilt changes accommodated by flex metal hoses

Magnet Field Plot

Magnetic field distribution: the axes are in meters; the rectangle is one half of the solenoid.

- The volume within the conductor is > 9.7 T (red), > 6.1 T (orange).
- The field at Z=0, R=0.6 is >0.6 T, at R=1.0 (base support structure), $B>\sim0.1$ T (1000 G).
- The field at Z=-2.5, R=0.4 (pump motor) is 0.03 < B < 0.07 T (300-700 G).

Fields with Solenoid

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Field Near Equipment

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

ssues

- Position hydraulic pump to minimize field effects
- Max field at cylinders between 0.17T & 0.26T
- Need steel cover plates for magnetic shielding over cylinders?
- Remote valve or sensor concerns?

Magnet & Target Base Supports

- Flexible metal hoses somewhat decouple the target module from the delivery system
- Only the magnet & target module must be precisely positioned relative to beam
 - Hg delivery system does not have to tilt or be exactly in line with magnet
 - Downbeam window on secondary containment should be oversized to accommodate delivery system misalignment
- Base material will be carbon steel or aluminum, depending on cost

Base Supports

- Magnet & Hg system will have independent mobility and leveling features
- Independent base supports should make equipment installation less complex

Recommendations

- Change from a common base support to independent supports for solenoid and Hg delivery systems
- Both should incorporate mobility and tilt/leveling features
- Increase size of secondary downbeam window to accommodate Hg system misalignment