

MERIT Hg System Final Design Review

Hg Target System Design

V.B. Graves P.T. Spampinato T.A. Gabriel

MERIT Collaboration Meeting MIT Plasma Science & Fusion Center Oct 5, 2005

> OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Outline - Component Details

- Syringe
- Primary containment
- Secondary containment
- Baseplates

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Hg Delivery System

- Capacity 23liters Hg (~760 lbs)
- Provides 1cm dia, 20m/s jet for up to 12 sec
- Secondary containment size 960mm x 1475mm x 960mm
- Estimated weight 2T with Hg

Hg Syringe System

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Hg Syringe System

- Hg flow rate 1.6liter/s (24.9gpm)
- Piston velocity 3.0cm/s (1.2in/sec)
- Hg cylinder force 525kN (118kip)

Fathom Flow Simulation

- System diagram for Hg flow
- Results indicate maximum pressure requirement of ~780 psi (50 bar) for baseline plenum/nozzle configuration
- Design system for max pressure of 1000 psig (70 bar)

Fathom Details

Die . Outenut Table

Pipe (Jutput Table													
		Pipe			Flow					P Stag.	dP Stag.		P Static	dP Static
		Nominal	Vol. Flow	Length	Area	Velocity	Reynolds		P Stag.	Out	Total	P Static	Out	Total
Pipe	Name	Size	(gal/min)	(inches)	(inches2)	(feet/sec)	No.	fL/D+K	In (psig)	(psig)	(psid)	In (psig)	(psig)	(psid)
	1 Hg Cylinde	10 inch	24.9	15	78.854	0.101	6.86E+04	0.0296	784	784	2.77E-05	783.9	784	2.77E-05
	2 Cylinder D	1 inch	24.9	1.5	0.864	9.24	6.56E+05	0.0256	780	780	0.199779	772.2	772	0.199779
	3 Cylinder D	1 inch	24.9	0.8	0.864	9.24	6.56E+05	0.0136	777	776	0.302768	769	769	0.302768
	4 Hg Manifol	1 inch	24.9	16.1	0.864	9.24	6.56E+05	0.2745	774	764	9.772281	765.9	756	9.772281
	5 Hose Inlet	1 inch	24.9	2.1	0.864	9.24	6.56E+05	0.0358	761	760	0.279691	752.8	752	0.279691
	6 Flex Metal	1 inch	24.9	10.5	0.945	8.449	6.27E+05	0.17	760	759	1.110492	753.7	753	1.110492
	7 Hg Supply	1 inch	24.9	1.86	0.594	13.433	7.91E+05	0.0284	755	755	0.469346	738.7	738	0.469346
	8 Hg Supply	1 inch	24.9	6.7	0.594	13.433	7.91E+05	0.1024	752	750	1.690654	735.3	734	1.690654
	9 Hg Supply	1 inch	24.9	44	0.594	13.433	7.91E+05	0.6726	747	736	11.1028	730.8	720	11.1028
	10 Plenum	5 inch	24.9	3	20.006	0.399	1.36E+05	0.0105	721	721	0.000153	720.6	721	0.000153
	11 Nozzle	1/2 inch	24.9	4	0.108	74.271	1.86E+06	0.1491	469	394	75.21312	-35.3	-110	75.21312
All Ju	nction Table													
			Elevation				P Stag.	dP Stag.		P Static	dP Static			
		Junction	Inlet	Loss	dH	P Stag.	Out	Total	P Static	Out	Total	T Inlet	1	
Jct	Name	Туре	(inches)	Factor (K)	(inches)	In (psig)	(psig)	(psid)	In (psig)	(psig)	(psid)	(deg. F)		
	1 Syringe Pi	Assigned	0	0	0	784	784	. 0	784	783.9	0	68		
	2 Area Chan	Area Chan	0	4,128.12	7.895	784	780	3.8729	784	772.2	11.682	68.2		
	3 Bend 1	Bend	0	0.33841	5.388	780	777	3.011	772	769	3.011	68.2		
	4 Bend 2	Bend	1.15	0.27347	4.354	776	774	2.7736	769	765.9	2.774	68.2		
	5 Bend 3	Bend	18	0.33841	5.388	764	761	3.3789	756	752.8	3.379	68.3	_	
	6 Pipe to Fle	Area Chan	19.5	0.00733	0.117	760	760	0.0572	752	753.7	-1.223	68.3		
	7 Flex to Tul	Area Chan	19.5	0.60087	7.999	759	755	3.924	753	738.7	13.901	68.3		
	8 Tubing Be	Bend	19.5	0.17406	5.857	755	752	2.8734	738	735.3	2.873	68.3		
	9 Tubing Be	Bend	19.5	0.17406	5.857	750	747	2.8734	734	730.8	2.873	68.3		
100	10 Plenum Inl	Area Chan	19.5	0.94145	31.682	736	721	15.5414	720	720.6	-0.952	68.3		
	11 Nozzle Inle	Area Chan	19.5	17,240.17	512.271	721	469	251.2909	721	-35.3	755.894	68.3		
	12 Spray	Spray Disc	19.5	0.78106	802.957	394	0	393.8837	-111	-504.6	393.884	75		

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Other Fathom Simulations

- 1/2" tubing bend
 - Cylinder pressure 1200 psi (83 bar)
- No-bend short 1/2" tube
 Cylinder pressure 710 psi (48 bar)
- 1" tubing bend
 - Cylinder pressure 780 psi (54 bar)
- All 1/2" tubing from end of flex metal hose, no plenum
 - Cylinder pressure 1910 psi (130 bar)
- Any non-plenum design should minimize number of bends & length of nozzle tubing
- Don't let syringe pump limit nozzle configuration - recommend changing system design pressure to 1500 psi (103 bar) to match Hg cylinder rating

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Non-Plenum Nozzles

- Room is available to eliminate plenum, keep tubing under beam
- Flow streamlines become more of an issue
 - Desire to move bend further from nozzle

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Syringe Procurement

- Complete system design based on specified requirements
- Piston pump (inside secondary containment)
 - One 10-inch Hg Pump Cylinder
 - Two 6-inch Drive Cylinders (one with integrated position sensor)
 - Tie beam
 - Baseplate
 - Hydraulic hoses inside secondary for operating Drive Cylinders
- Hydraulic pump (outside secondary containment)
 - Pump, motor, reservoir
 - Proportional, directional control valve
 - Hydraulic hoses between pump & secondary containment
 - Motor controller
 - Variable voltage transformer for U.S. and European operation
- Hydraulic fluid (drum)
- Integration of system components
- System testing with water

Syringe Procurement Status

RFQ sent to 5 vendors, 4 submitted quotes

- Requested prices for std cylinders & SS cylinders
- Low bid: \$60K (std), \$68K (SS)
- Subcontract awarded to Airline Hydraulics (Edison, NJ)
- Chose SS cylinder option
- Kickoff meeting being scheduled for next week

 Vendor required to host a syringe design review 30 days after contract award, prior to ordering materials

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Syringe Hydraulic Schematic

Bill of Materials									
Find No.	Name	Description	Qty.						
1	pump and motor	TEFC motor, pump, mounted vibration absorbing pads	1						
2	relief valve	set for 3300 PSI	1						
3	filter	filter with electrical filter dirty switch and bypass valve	1						
4	level switch	reservoir low level cutoff switch	1						
5	hose	hose length 65 ft, quick connections both ends	2						
6	proportional valve	Bosh 4 WREE or equivalent	1						
7	ball valve	reservoir drain valve with TBD end fitting	1						
8	hydraulic cylinder	hydraulic cylinder, 15" stroke	2						
9	hydraulic cylinder	mercury syringe cylinder, bore 10°, stroke 15°, 4 ports as noted	1						
10	tie-beam	beam providing mechanical connection between cylinders	1						
11	pressure sensor	electronic pressure sensor with attachable indicator display, 0-4000 psi, signal 4-20ma	1						
12	pressure sensor	electronic pressure sensor with attachable indicator display, 0-500 psi, signal 4-20ma	1						
13	position sensor	linear potentiometer, Celesco CLWG or equivalent	2						
14	ball valve	cylinder drain valve with TBD end fitting	1						

August 24, 2005

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Primary Containment

- Hg supply flow path
 - 1-inch Sch 40 pipe
 - 1-inch flex metal hose w/sanitary fittings
 - 1-inch, 0.065-wall rigid tubing
 - 5-inch diameter plenum
 - 12mm-dia, 1mm-wall rigid tubing

• Hg jet return path

- 1/4-inch plate weldment chamber
- 6-inch to 2-1/2-inch eccentric reducer
- 2-1/2-inch flex metal hose w/sanitary fittings
- Sump tank

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Normal Syringe Operations

- Slowly extend cylinder to fill Hg cylinder from sump
- Slowly retract cylinder to starting position & prefill Hg supply piping
- Some time after trigger is received, ramp cylinder to full speed
 - Need engineering solution to prevent possibility of sudden cylinder start – will discuss with syringe vendor
- Steady-state jet for 1sec
- Ramp cylinder to zero velocity
 - Sudden stop can cause flow separation & Hg hammer

Sump Tank

- Fabrication: 1/4" plate SS304L/316L
- Ports for Hg fill & extraction, Hg level sensor, syringe vents, breather checkvalves, supply line relief

on 00 UT-BATTELLE

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Sump Tank Analysis

800-lb Hg load on tank bottom
Min FOS > 9

<complex-block>

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

MERIT Collab. Mtg Oct 17-29, 2005

sump tank hit-hg weight :: Design Check Criterion : Max von Mises Stress

Deformation Scale 1:0

Factor of safety distribution: Min FOS = 9.2

Manifold

Model name: hg manifold hit Study name: COSMOSXpressStudy Plot type: Static nodal stress Plot1 Deformation scale: 4456.01

 Designed for socket weld fabrication, SS304L/316L

Channels

- Flow 1" pipe
- Hg cylinder vent 1/2" tube
- Sump drain 3/4" pipe
- Pressure transducer 1/2" tube
- Relief valve 3/4" tube

FEA results

- FOS = 4.8 for 1000 psi
- Will be redesigned for 1500 psi

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Hg Plenum

 Fabrication incorporates nozzle, beam window, and Hg supply tubing

Replaceable module

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Primary Containment Pressure Ratings

Pressure Ratings Table

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Primary Containment Beam Windows

- Single layer Ti6Al4V, 1mm thick
- Hg deflector acts as beam window, made from same material
- Horizontal beam kick
 - 6mm @ primary window
 - 18mm @ secondary window
- Downstream window sized to accommodate horizontal beam kick and small changes in magnet tilt

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Hg Deflector

- Simplifying analysis indicates imparted force on plate of 425N (95lb)
- Using Ti6Al4V thickness of 1mm gives a safety factor < 1
- Recommend deflector thickness of 2mm
 FS = 3.5

Accommodating Tilt Changes

- Hg delivery system can accommodate some amount of decreasing tilt angle and keep beam in windows
 - 30mrad upstream
 - 33mrad downstream

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

dY: 28.84mm

Beam Window Fabrication Issues

- Do not have definitive answer to question of weldability between Ti6AI4V and SS304L/316L
- If reliable process is found, it likely will require some development by fabricator to establish welding parameters
 - Material samples and added cost
- Can windows be SS316L/304L?

Secondary Containment

- SS304L/316L 1/2" bottom plate, 1/4" front, sheet metal sides & back (7ga, 0.179")
 May add stiffeners to sides & back
- Flexible sleeve (non-metallic, combustibility issue)
- SS304L/316L cylindrical sleeve (13ga, 0.089")
- Passive filtration
 - Filtered inlet and outlet, both will be have shutoff gates

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Secondary Containment Double Beam Windows

- Similar in construction to Hg plenum
- SS pipe with Ti6Al4V caps
 - All Ti if necessary, but attachment to secondary containment still an issue
- Flexible tubing back to hydraulic system
- Pressurize and monitor to detect failure
 - Can also vacuum monitor, but pump and larger tubing required
 - Will test at ORNL, determine final method

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Secondary Containment Access Ports

- Optical diagnostics
- Instrumentation
- Hydraulics
- Hg drain & fill (without opening secondary)
- Hg extraction (in event of major leak in primary containment)

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Secondary Containment Monitoring and Filtering

- Two Hg vapor monitors for secondary volume
- Passive filtration with shutoff, can connect to active filtration system
 - Will have single cartridge rather than respirators
- Third vapor monitor for passive filter exhaust and/or tunnel monitoring
- Investigating whether monitors can be moved away from experiment

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Baseplates

 Purpose – provide mobility, alignment, and structural support for experiment components
 – Experiment requires magnet tilt of 66mrad (3.8°)

Two baseplates

- Target transporter
- Common baseplate

Target Transporter

- Transports Hg system inside tunnel using Hilman rollers

 O/A length 62" (1.6m)
- Rails for Hg system cart wheels
- Jack bolts prevent rolling
- Swivel hoist rings for lifting & cart tiedown
- Material: AL6061-T6

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

MERIT Side View

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Common Baseplate

- Shares design with transporter baseplate
 O/A length 124" (3.15m)
- Rollers used to grossly align solenoid to beam
- Provides lateral movement of solenoid for alignment to beam once rollers removed

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Design Constraints & Requirements

- Total supported weight
 - Magnet: 9000 lbs
 - Hg System with 23liter Hg: 4000 lbs
 - Baseplate: 1000 lbs
 - Movement requires lateral force of 700 lbs (μ_s = 0.05 per Hilman)
- Maximum width of 1.3m (51") to meet CERN facility constraints
- Fabrication material to be non-magnetic (chose AL 6061-T6)
- Must have lifting & leveling provisions
- Currently not anchored to floor is there a need?

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Common Baseplate Structure

- 4-inch AL channel frame, I-beam internal supports
- Hilman roller support plates
- Welded leveling jack gusset plates
- Side-load swivel hoist rings for lifting
- Removable jack stand gussets

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Magnet Lateral Alignment

- Gross adjustment provided by Hilman rollers
- Low-friction surface plate sits between magnet support plate and baseplate
- Weld studs with nuts hold final position
- Jackbolts provide lateral moving force
- Lateral adjustment range ±25mm

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Common Baseplate Structural Analysis – 3 Rollers

Condition: loaded baseplate carried by 3 Hilman rollers

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Common Baseplate Structural Analysis – 4 Lift Jacks

Condition: loaded baseplate supported by 4 hydraulic jacks

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Common Baseplate Structural Analysis - 4 Leveling Jacks

Condition: loaded baseplate supported by 4 leveling jacks

• Min FOS=1.8 in localized areas

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Some Final Design Details

 Some dimensions of Hg delivery system can't be finalized until syringe design is complete

• Will need magnet as-built height on its base

Remaining Design Work

- Finalize procured component details for drawings
- Drawing check
- Sensor / instrumentation wiring diagram
- Generate fabrication vendor list
- Write procurement specification

Design Issues

- Nozzle configuration plenum vs non-plenum
- Nozzle details length, exit features
- Final dimensions for syringe system, magnet height

