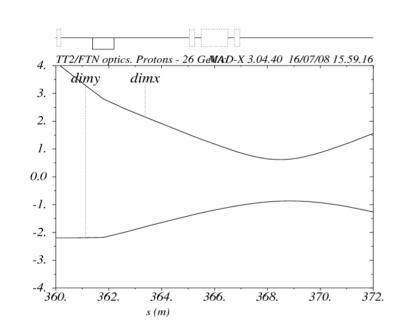
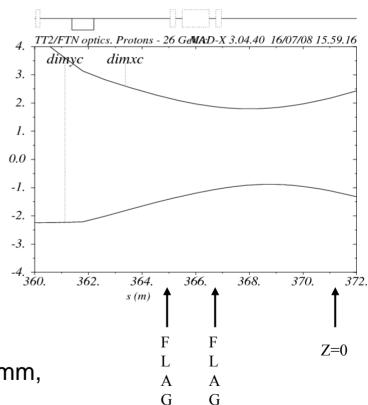


Proton Beam Spot Size

MERIT EVO Meeting

September 10, 2008



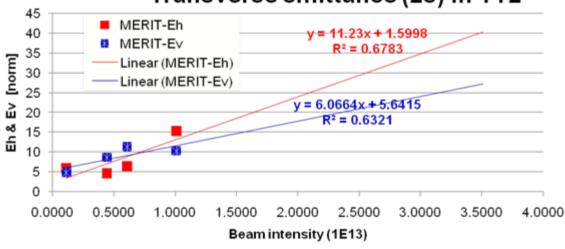

Beam envelope (1-sigma) - ε=0.25 (mm.mrad), Dp=0.1%

Ilias Efthymiopoulos July 16, 2008

Without dispersion term

With dispersion term

$$\sigma(x) = 2.2 \text{mm}$$
, $\sigma(y) = 0.86 \text{ mm}$,



Emittance measurements

Use the data to extrapolate at higher intensities

For 10Tp the 2σ Normalized emittances are:

$$\varepsilon_{\rm h} = 12.8 \text{ mm-mrad}$$
 $\varepsilon_{\rm v} = 11.7 \text{ mm-mrad}$

$$\varepsilon_{\rm v} = 11.7$$
 mm-mrad

For a 24 GeV proton beam $\beta y = 26.57$

1σ geometric emittances are: $\varepsilon_h = 0.12$ mm-mrad $\varepsilon_v = 0.11$ mm-mrad

$$\varepsilon_{\rm h} = 0.12 \text{ mm-mrad}$$

$$\varepsilon_{\rm v} = 0.11$$
 mm-mrad

Spot Size at Z=0

Predicted 1σ beam spot size at Z=0 for 24 GeV, 10Tp proton beam is:

$$\sigma(x) = 1.5 \text{mm}$$
, $\sigma(y) = 0.73 \text{ mm}$,

