

Target Baseline

IDS-NF Plenary

CERN

March 23-24, 2009

Harold G. Kirk Brookhaven National Laboratory

The Neutrino Factory Target Concept

NATIONAL LABORATORY

Alternative Collection System

- Another containment approach includes a shortened Hg container
- Drain lines exit cryostat between SC-3 and SC-4
- This would trap container in the cryostat, preventing future replacement

The Hg Jet Nozzle

Nozzle performance:

Neutrino Factor

The Jet/Beam Dump Interaction

T. Davonne, RAL

Fluka Simulation - Energy deposition in mercury pool with 24GeV beam

How much of the beam energy is absorbed in the beam dump?

T. Davonne, RAL

Eruption of mercury pool surface due to 24GeV proton beam

Autodyne simulation

Splash following pulse of 20Terra protons

Neutrino Factor

Splash Mitigation

- Study 2 assumed a particle bed of tungsten balls to minimize effects of jet entering pool
- Many other feasible concepts to accomplish this function
- Simulation/analytical studies may be useful to limit options
- Pool circulation and drainage locations also need to be studied
- **Prototypic testing needed for comparison & final determination**

Material compatible with high-field magnets

- Must also withstand some number of full-power beam pulses with no Hg in vessel (accident scenario)
- **Desire no replaceable components**
- **Provide support for Hg weight**
 - ~220 liters, 3 metric tons
- Sloped (1°-2°) for gravity drain
- **Overflow drain for 20m/s jet (1.6 liter/s)**

Vent for gas transfer BROOKHAVEN NATIONAL LABORATORY

- Esatablish a coherent, engineered design concept
 - Design and test an improved nozzle
 - Design an Hg handling system
 - Design and test a CW Hg delivery system
- Design, fabricate and beam test a target prototype

Previous results: Radius 5mm, $\theta_{beam} = 67mrad$ $\Theta_{crossing} = 33mrad$

The Target/Collection System

Count all the pions and muons that cross the transverse plane at z=50m.

For this analysis we select all pions and muons with 40 < KE< 180 MeV.

50GeV Beam-Mesons at 50m

murold G. Kirk

Leutrino Factor

Mesons at 50m

Mesons/ProtonMesons/Proton normalized to beam powerFixed Parameters: R=5mm; Beam Angle=67mrad; Jet/Beam = 33mradBROCKHEVENISS Results reported April, 2006Harold G. Kirk

Vary the Target Radius

Optimized Target Radius 2 to 100 GeV

Beam Angle and Jet/Beam Crossing Angle

Mars14 vs Mars15 Comparison

Normalized to Beam Power

Neutrino r

В

Normalized to Peak

- Peak meson production efficiency for a Neutrino Factory Hg Target system occurs in the region of 6 to 8 GeV
- At 20 GeV we have a 25% loss in efficiency
- At 40 GeV we have a 45% loss in efficiency
- At 80 GeV we have a 50% loss in efficiency

