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Subject Matter Covered Here

WG1 High-Power Target Issues

WG2 Target Station Design and Requirements for 
Muon Colliders and Neutrino Factories
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The Challenge: Convert to Secondaries

Intense Primary Beam Intense Secondary Beam

Secondary Beams for New Phyisics
Neutrons (e.g. for neutron sources)
π’s (e.g. for Super ν Beams)
μ’s (e.g. for Muon Colliders, Neutrino Factories)
Kaons (e.g. for rare physics processes)
γ’s (e.g. for positron production)
Ion Beams (e.g. RIA, EURISOL, β-Beams)

Target
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High-power Targetry Challenges

High-average power and high-peak power issues
 Thermal management

 Target melting
 Target vaporization

 Radiation
 Radiation protection 
 Radioactivity inventory
 Remote handling

 Thermal shock
 Beam-induced pressure waves

 Material properties
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Choices of Target Material

 Solid
 Fixed
 Moving
 Particle Beds

 Liquid
 Hybrid

 Particle Beds in Liquids
 Pneumatically driven Particles
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High-Power Targetry R&D

Key Target Issues for high-power targets
 What are the power limits for solid targets?
 Search for suitable target materials (solid and liquid) for 
primary beams > 1MW
 Optimal configurations for solid and liquid targets
 Effects of radiation on material properties

 Target materials
 Target infrastructure 

 Material limits due to fatigue 
 Design of reliable remote control systems
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A 4MW Target Hall

Phil Spampanato, ORNL
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High-peak Power Issues

When the energy deposition time frame is on the order off or 
less than the energy deposition dimensions divided by the 
speed of sound then pressure waves generation can be an 
important issue.

Time frame = beam spot size/speed of sound

Illustration
Time frame = 1cm / 5x103 m/s = 2 µs
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CERN ISOLDE Hg Target Tests

Bunch Separation [ns]

Proton 
beam
5.5 Tp per
Bunch.

A. Fabich, J. Lettry
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Pressure Wave Amplitude

Stress =  Y αT U / CV
Where Y =  Material modulus

αT = Coefficient of Thermal Expansion
U  =  Energy deposition
CV = Material heat capacity

When the pressure wave amplitude exceeds material tensile 
strength then target rupture can occur.   This limit is material 
dependant.
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Example:  Graphite vs Carbon Composit
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BNL E951: 24 GeV, 3 x 1012 protons/pulse
BNL E951 Target Experiment 

24 GeV 3.0 e12 proton pulse on Carbon-Carbon and ATJ graphite targets
Recorded strain induced by proton pulse
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Carbon-Carbon Composite
Average Proton Fluence

( 1020 protons/cm2)
0.76

{ 0.52 and 0.36

0.13

none
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Super-Invar CTE measurements
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Recovery of low αT

Carbon-Carbon anneals at ~3000C Super-Invar anneals at ~6000C
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The International Design Study Baseline
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The IDS Neutrino Factory Baseline

Mean beam power 4 MW
Pulse repetition rate 50 Hz
Proton kinetic energy 5-10-15 GeV
Bunch duration at target 1-3 ns rms

Number of bunches per pulse 1-3
Separated bunch extraction delay  17 µs
Pulse duration: ≤ 40 µs

The IDS Proton Driver Baseline Parameters
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The Neutrino Factory Bunch Structure

1–3 ns

< 40 µs

20 ms
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Driver Beam Bunch Requirement
Proton beam bunch 
length requirements 
due to rf incorporated 
in the downstream 
phase rotation and 
transverse cooling 
sections.

Bunch length = 2± 1 ns
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MARS15 Study of the Hg Jet Target Geometry

Solenoid Axis

Hg Jet

Proton Beam
θBEAM

θCROSS

rJET

Previous results: Radius 5mm, θbeam =67mrad
Θcrossing = 33mrad
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Optimized Meson Production

Production of soft pions is 
most efficient  for a Hg 
target at        Ep ~ 6-8 GeV,   

Comparison of low-energy  
result with HARP data 
ongoing
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() /Ebeam, integrated over the measured phase space 
(different for the two groups).

HARP (p + Pb -> +- X)            HARP-CDP  (p + Ta -> +- X)

 peaks in range 4~7 GeV => no dramatic low E drop-off           

Jim Strait – NUFACT09

23J. Strait - FermilabNuFact ‘09
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HARP Cross-Sections x NF Capture Acceptance

HARP (p + Pb -> +- X)           HARP-CDP  (p + Ta -> +- X)

24NuFact ‘09 J. Strait - Fermilab

HARP pion production cross-sections, weighted by the acceptance of 
the front-end channel, and normalized to equal incident beam power, 
are relatively independent of beam energy.
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Multiple Proton Beam Entry Points

p0

p8

p4
p12

jet

Proton beam entry points upstream of jet/beam crossing

Proton Beam
Entry points Entry points

are 
asymmetric
due to the 
beam tilt in a 
strong 
magnetic field
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Trajectory of the Proton Beam
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Multiple Entry Entries

p11

p4

A 10% swing
in meson 
production
efficiency
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Influence of β* of the Proton Beam

β* = 10cm β* = 300cm
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Meson Production vs β*

Meson 
Production 
loss ≤ 1% for 
β* ≥ 30cm
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The MERIT Experiment at CERN

1234

Syringe PumpSecondary
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Installed in the CERN TT2a Line

Before Mating

After Mating and Tilting
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Optical Diagnostics

1 cm

Viewport 2 
100μs/fras

Velocity Analysis

Viewport 3
500μs/fras

Disruption Analysis
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Stabilization of Jet by High Magnet Field

Jet velocities: 15 m/s
Substantial surface perturbations mitigated by high-magnetic field.

0T                                   5 T                        10 T                              15 T

MHD simulations (W. Bo, SUNYSB):
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Disruption Analysis

Disruption lengths reduced with higher magnetic fields
Disruption thresholds increased  with higher magnetic fields

14 GeV 24 GeV
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10TP, 10T

20TP, 10T
t=0 t=0.175 ms t=0.375 ms

V = 54 m/s

t=0.075 ms

t=0 t=0.175 ms t=0.375 mst=0.050 ms

V = 65 m/s

Velocity of Splash: Measurements at 24GeV
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Filament Velocities
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Pump-Probe Studies
Test pion production by trailing  bunches after disruption of the 

mercury jet due to earlier bunches
At 14 GeV, the CERN PS can extract several bunches during one turn 

(pump), and then the remaining bunches at a later time (probe).
Pion production was monitored for both target-in and target-out events 

by a set of diamond diode detectors.

PUMP: 12 bunches, 12 
1012 protons

PROBE: 4 bunches, 
41012 protons

Diamond Detectors

Proton Beam

Hg Jet Target
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Pump-Probe Data Analysis

No loss of pion production for bunch delays of 40 and 350 s,
A 5% loss (2.5- effect) of pion production for bunches delayed by 700 s.

Production Efficiency: Normalized Probe / Normalized Pump
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Study with 4 Tp + 4 Tp at 14 GeV, 10 T

Single-turn extraction
 0 delay, 8 Tp

4-Tp probe extracted on 
subsequent turn
 3.2 μs delay

4-Tp probe extracted 
after 2nd full turn
 5.8 μs Delay

Threshold of disruption is > 4 Tp at 14 Gev, 10 T.

Target supports a 14-GeV, 4-Tp beam at 172 
kHz rep rate without disruption.

PUMP: 8 bunches, 
4 1012 protons

PROBE: 8 bunches, 
41012 protons
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Key MERIT Results

 Jet surface instabilities reduced by high-magnetic fields
 Hg jet disruption mitigated by magnetic field

 20 m/s operations allows for up to 70Hz operations
 115kJ pulse containment demonstrated

8 MW capability demonstrated
 Hg ejection velocities reduced by magnetic field
 Pion production remains stable up to 350μs after previous 
beam impact
 170kHz operations possible for sub-disruption threshold 
beam intensities
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The MERIT Bottom Line

The Neutrino Factory/Muon Collider 
target concept has been validated for 
4MW, 50Hz operations.

BUT
We must now develop a target system 
which will support 4MW operations
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MERIT and the IDS Baseline

Mean beam power 4 MW
Pulse repetition rate 50 Hz
Proton kinetic energy 5-10-15 GeV
Bunch duration at target 1-3 ns rms

Number of bunches per pulse 1-3
Separated bunch extraction delay  17 µs
Pulse duration: ≤ 40 µs

NERIT

OK
OK

 6 µs
≤ 350 µs

The IDS Proton Driver Baseline Parameters
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IDS-NF Target Studies
Follow-up: Engineering study of a CW mercury 
loop + 20-T capture magnet
 Splash mitigation in the mercury beam dump.
 Possible drain of mercury out upstream end of 

magnets.
 Downstream beam window.
 Water-cooled tungsten-carbide shield of 

superconducting magnets.
 HTS fabrication of the superconducting magnets.
 Improved nozzle for delivery of Hg jet
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Summary
MERIT has successfully demonstrated the 
Neutrino Factory/Muon Collider target concept
Target studies are continuing within IDS-NF 
framework
 The infrastructure for a 4MW target system 
needs to be designed/engineered
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Backup Slides
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The MERIT  Experiment at CERN

MERcury Intense Target
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Profile of the Experiment

 14 and 24 GeV proton beam
 Up to 30 x 1012 protons (TP) per 2.5s spill
 1cm diameter Hg Jet
 Hg Jet/proton beam off solenoid axis

 Hg Jet 33 mrad to solenoid axis
 Proton beam 67 mrad to solenoid axis

 Test 50 Hz operations
 20 m/s Hg Jet
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The Jet/Beam Dump Interaction

T. Davonne, RAL
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Shielding the Superconducting Coils

MARS 
Dose
Rate 
calculations


