

The Muon Collider/Neutrino Factory Solenoid Capture System

Solenoid Capture Workshop

Brookhaven National Lab

November 29-30, 2010

Harold G. Kirk Brookhaven National Laboratory

NATIONAL LABORATORY

The Muon Collider Concept

The muons in a storage ring decay such that: $\mu^+ \rightarrow e^+ \overline{v_e} v_{\mu}$ and $\mu^- \rightarrow e^- v_e \overline{v_{\mu}}$

Further, the v's are projected forward with an opening angle $\sim 1/\gamma$.

This gives rise to a very powerful v beam capable of being projected over long baseline distances.

Layout of a Neutrino Factory

The Neutrino Factory Target Concept

The Proton Beam Parameters

Proton Beam Energy	8 GeV
Rep Rate	50 Hz
Bunch Structure	3 bunches, 320 µsec total
Bunch Width	2 ± 1 ns
Beam Radius	1.2 mm (rms)
Beam β*	≥ 30cm
Beam Power	4 MW (3.125 × 1015 protons/sec)

Target type	Free mercury jet
Jet diameter	8 mm
Jet velocity	20 m/s
Jet/Solenoid Axis Angle	96 mrad
Proton Beam/Solenoid Axis Angle	96 mrad
Proton Beam/Jet Angle	27 mrad
Capture Solenoid Field Strength	20 T

The NF Study 2 Target System

8

Target System Exploded View

- All insertion/extraction from upstream end
- Locating & supporting features not shown – will require additional space

MARS15 Study of the Hg Jet Target Geometry

Previous results: Radius 5mm, $\theta_{beam} = 67mrad$ $\Theta_{crossing} = 33mrad$

Multiple Proton Beam Entry Points

Proton beam entry points upstream of jet/beam crossing

Optimized Meson Production

X. Ding, UCLA

Meson Production vs β*

MARS Energy Deposition Studies

MARS15 study of Study 2 configuration yields 38KW energy deposition in SC1 alone

BeWindow (z=600cm)

NATIONAL LABORATORY

Reconfigure SC magnets

Increase the SC ID's. Fill released volume with shielding. Total energy deposition in all SC's reduced to ~4kW.

But SC magnets around target are now extremely difficult.

Details to be provided by N. Souchlas

General Target Issues

- Thermal management (~3MW power deposited)
- Shielding (SC Solenoids required)
- Target integrity (Thermal Shock)
- Target regeneration (50Hz rep-rate)
- 20T environment

Liquid Hg specific issues

- Stable fluid flow (Nozzle performance)
- Hg handling system

