

A MW Class Target System for Muon Beam Production

AAC 2014

San Jose, Ca

July 14-18, 2014

Harold G. Kirk Brookhaven National Laboratory

High-average power and high-peak power issues

- Thermal management
 - Target melting
 - Target vaporization
- Radiation

NATIONAL LABORATORY

- Radiation protection
- Radioactivity inventory
- Remote handling
- Thermal shock
 - Beam-induced pressure waves
- Material properties

PRODUCTION OF INTENSE MUON BEAMS

Muon beams produced as tertiary beams: $p \rightarrow \pi \rightarrow \mu$

Tracks E>20 MeV

AAC 2014 San Jose, Ca July 14-18

The Capture Solenoid

- A Neutrino Factory and/or Muon Collider Facility requires challenging magnet design in several areas:
 - Target Capture SC Solenoid (15T with large aperture)
 - Stored Energy ~ 3 GJ
 - 10MW, 5T resistive coil in high radiation environment

Possible application for High Temperature Superconducting magnet technology

AAC 2014 San Jose, Ca July 14-18

We consider proton beam powers of 1-,2- and 4-MW

Solid and liquid targets considered:

- High-Z, eg. W, Hg, PbBi
- Mid-Z, eg. Ga, Cu, Ni
- Low-Z, eg. Be,C

Choice of Target Materials II

- High Z (e.g. Hg)
- Mid Z (e.g. Ga)
- Low Z (e.g. Carbon)

A <u>25%</u> advantage of using high-Z Hg compared to low-Z Carbon Low-z Carbon is attractive due to it's simplicity and robustness

Proton Beam: KE = 6.75 GeVNormalization: For Hg $\Sigma(\mu^+ + \mu^-)/\text{proton} \approx 30\%$ BROOKHAVENAAC 2014 San Jose, Ca July 14-18

A Graphite Target Core

Energy Deposition in a Graphite Targets

Graphite targets of various radii (0.8 to 40cm). Proton beam has an rms radius of 2mm at the center of the target and $\beta^* = 80$ cm. B = 0 T . . N.Souchlas, PBL B = 20 T

Largest power deposition for K=8mm case is 4 cm into target, but at ~00cm in targets with large radii...

AAC 2014 San Jose, Ca July 14-18

The steady state newer increases with magnetic field

NATIONAL LABOR.....

 $\begin{bmatrix} 0 \text{ mrad TILT}, B = 0, 20 \text{ T} \end{bmatrix}$ TOTAL DP vs radius of C rod -40< z < 40 cm, VARYING R $\begin{bmatrix} 1E5 \text{ EVENTS} \end{bmatrix}$

Peak Energy Deposition

N. Souchlas, PBL

80cm graphite target with various radii

Simulations for a 1.8g/cm³ graphite rget

eak energy deposition occurs 3 to cm into the target.

eak energy deposition is <u>3600J/g</u> r a 4-MW, 6.75 GeV proton beam

AAC 2014 San Jose, Ca July 14-18

Energy Deposition on Carbon Target

Beam Power	Rep Rate	Peak ED	Steady State ED
MW	Hz	J/g	kWatts
1	60	15	38
	15	60	38
2	60	30	75
	15	120	75
4	60	60	150
	15	240	150

Figure of Merit: T2K Graphite Target Peak ED Design Limit is 200 J/g

AAC 2014 San Jose, Ca July 14-18

The T2K Target Design

The CERN CNGS Target

13 graphite rods, each 10cm long,

Ø = 5mm and/or 4mm

2.7 interaction lengths

Target magazine holds 1 target plus

4 spares

AAC 2014 San Jose, Ca July 14-18

AGS E951: Graphite & Carbon-Carbon Targets

24 GeV, 3 x 10¹² protons/pulse

AAC 2014 San Jose, Ca July 14-18

Consider High-Z Targets

Advantages:

- 30% enhanced π/μ production
- If liquid then free jet mitigates shock damage

Disadvantages:

Enhanced energy deposition → liquid targets Enhanced radionuclide inventory

The MERIT Experiment

The MERIT Experiment at the CERN PS

- Proof-of-principle demonstration of a liquid Hg jet target in high-field solenoid
- Demonstrated a 20m/s liquid Hg jet injected into a 15 T solenoid a with a 115 KJ/pulse beam!

Key MERIT Results

Filament Ejection Velocity

AAC 2014 San Jose, Ca July 14-18

Study with 4 Tp + 4 Tp at 14 GeV, 10 T

Single-turn extraction → 0 delay, 8 Tp

4-Tp probe extracted on subsequent turn
→ 3.2 µs delay

4-T*p* probe extracted after 2nd full turn → 5.8 µs Delay

Threshold of disruption is > 4 Tp at 14 Gev, 10 T.

⇒Target supports a 14-GeV, 4-T*p* beam at 172 kHz rep rate without disruption.

AAC 2014 San Jose, Ca July 14-18

CERN ISOLDE Hg Target Tests

Pump-Probe Test

Production Efficiency: Normalized Probe / Normalized Pump

Ratio Target In-Out/Target Out

Delay Time, usec

No loss of pion production for bunch delays of 40 and 350 μ s, A 5% loss (2.5- σ effect) of pion production for bunches delayed by 700 μ s.

AAC 2014 San Jose, Ca July 14-18

- Jet surface instabilities reduced by high-magnetic fields
- Hg jet disruption mitigated by magnetic field
 - 20 m/s operations allows for up to 70Hz operations
- 115kJ pulse containment demonstrated

8 MW capability demonstrated

- Hg ejection velocities reduced by magnetic field
- Pion production remains stable up to 350µs after previous beam impact
- 170kHz operations possible for sub-disruption threshold beam intensities

AAC 2014 San Jose, Ca July 14-18

- A solenoid capture system could be a source for intense muon beams
- A solid graphite based target looks promising for 1-MW and 2-MW drive beam applications and may be possible at 4-MW for high-rep rates (50-60 Hz)
- Liquid high-Z targets are more efficient in the production of π/μ beams and are suitable for low rep-rate, 4-MW class drive beams

AAC 2014 San Jose, Ca July 14-18

Harold G. Kirk

26

The Neutrino Factory Target Concept

The NF Study 2 Target System

28