

Targetry Plans and Status

MUTAC Review

FNAL

March 17, 2006

Harold G. Kirk Brookhaven National Laboratory

International Scoping Study

Question: Given a "Green Field" what are the most favorable parameters for a proton driver to a Neutrino Factory?

A related question: Liquid or Solid Target Can a solid target survive a >1MW proton driver beam? (Nick Simos → Solid Target Studies) Is a liquid target for a >1MW proton driver technically feasible? (MERIT target experiment at CERN)

What is the "preferred" proton driver energy?

NATIONAL LABORATORY

Achieving Intense Muon Beams

Optimizing Soft-pion Production

Process mesons through Cooling

Meson KE < 350 MeV at 50m

Mesons/Proton

Mesons/Proton normalized to beam power

Post-cooling 30π Acceptance

Y

Carbon Target Parameters Search

Carbon Target Optimization

NATIONAL LABORATORY

Proton KE Scan with Carbon

Summary of Results

Compare Meson production for Hg at 24 GeV and 10 GeV

$$\frac{N^{+}_{10GeV}}{N^{+}_{24GeV}} = 1.07 \quad \frac{N^{-}_{10GeV}}{N^{-}_{24GeV}} = 1.10$$

Compare Meson
production for C at 24 GeV
$$\frac{N^+ 5GeV}{N^+ 24GeV} = 1.90 \qquad \frac{N^- 5GeV}{N^- 24GeV} = 1.77$$

Compare Meson production for Hg at 10 GeV and C at 5 GeV

$$\frac{N^{+}_{Hg-10GeV}}{N^{+}_{C-5GeV}} = 1.18 \quad \frac{N^{-}_{Hg-10GeV}}{N^{-}_{C-5GeV}} = 1.22$$

"R&D on the muon production target experiment at CERN will also be funded"

Presidential FY07 Budget Request to Congress

The MERIT (nTOF11) Experiment

MERcury Intense Target

Target Test Site at CERN

The Tunnel Complex

Neutrino Fack

- 14 and 24 GeV Proton beam
- Up to >30 x 10^{12} Protons (TP) per 2µs spill
- Proton beam spot with $r \le 1.5 \text{ mm rms}$
- 1cm diameter Hg Jet
- Hg Jet/Proton beam off solenoid axis
 - Hg Jet 33 mrad
 - Proton beam 67 mrad
- Test 50 Hz operations
 - 20 m/s Hg Jet
 - 2 spills separated by 20 ms

- PS will run in a harmonic 16 mode
- We can fill any of the 16 rf buckets with sub-bunches at our discretion.
- Each microbunch can contain up to 2.5 TP.
- \bullet Fast extraction can accommodate entire 2µs PS fill.
- Extraction at 24 GeV
- Partial/multiple extraction possible at 14 GeV
- Beam on target April 2007

Run plan for PS beam spills

The PS Beam Profile allows for:

- Varying beam charge intensity from 4 TP to > 30 TP.
- Studying influence of solenoid field strength on beam dispersal (vary B_0 from 0 to 15T).
- Study possible cavitation effects by varying PS spill structure (Pump/Probe)
- Study 50 Hz operation.

15T Pulsed Solenoid 8 MVA Power Supply LN₂ Cryo-system Hg Jet Delivery System (K. McDonald) **Diagnostics (K. McDonald)** Optical Particle Detection CERN Infrastructure (I. Efthymiopoulos) Simulations (R. Samulyak)

High Field Pulsed Solenoid

- 80° K Operation
- 15 T with 5.5 MW Pulsed Power
- 15 cm warm bore
- 1 m long beam pipe

Peter Titus, MIT

Pulsed Solenoid Milestones

Delivery to MIT Reception Testing Integration Testing Ship to CERN Installation at CERN January 06 March 06 September 06 December 06 January 07

The Pulsed Solenoid

CVIP December 2005

First Current: MIT March 9, 2006

Power Supply Milestones

Site Preparations Relocate and Install DC Cabling AC Cabling Refurbish PS

Interlocks Commissioning January 06 February 06 March 06 March 06 March-April 06

September 06 October 06

TT10 Vent Installation Cold Valve Box Fabrication Control System Development Surface Preparations Transfer Line Installation Cold Valve Box Testing Heater System Installation Cold Valve Box Installation Commissioning

January 06 April-July 06 January-June 06 May 06 July 06 October 06 September 06 November 06 December 06

Cryosytem Layout

 LN_2 and N_2 gas stored on the surface.

- Cold valve box in the TT2 tunnel.
- Exhaust gas vented into TT10 tunnel through filtration system.
- ~ 150 liters of LN₂ per Magnet pulse.

Magnet flushed with N_2 prior to each pulse, to minimize activation of N_2 .

The Hg Jet System

Princeton Nozzle R&D

Summary

The MERIT (nTOF11) Experiment

- Study single beam pulses with intensities >30TP
- Study influence of solenoid field strength on Hg jet dispersal (B_0 from 0 to 15T)
- Study 50 Hz operations scenario
- Study cavitation effects in the Hg jet by varying PS spill structure—Pump/Probe
- First beam expected April 2007
- Confirm Neutrino Factory targetry concept

Backup Slides

Budget and Funding Profile

		Tech. Board Sept. 21 2004	MERIT Review Dec. 12 2005	Spending Pro	ofile by FY	
		2004	2000	FY05	FY06	FY07
Magnet Systems						
	Fabrication	0	60	60	0	0
	Testing	200	200	48	112	40
	Cryogenics	550	385	0	250	135
	Power Supply	390	210	0	160	50
Ha Jet						
	Systems integration	200	200	85	75	40
	Nozzle development	50	65	25	40	0
	Optics components	25	100	16	74	10
	Fabrication	40	170	0	170	0
Shipping		0	20	0	14	6
Operation	6	218	263	19	65	179
Decommis	sioning	60	60	0	0	60
Simulations		150	150	40	50	60
Material R&D		75	75	30	0	45
3 Year Project Cost Spending Profile		1958	1958	323	1010	625
Funding P	rome			693	640	620

Project Major Sub-systems

	2005	2006	2006	2006	2006	2007
	Q4	Q1	Q2	Q3	Q4	Q1
Magnet						
Magnet Delivery						
Receiving Testing						
Integration Testing						
Shipping						
Installation						
Hg Jet						
System Fabrication						
Nozzle Development						
Optical Diagnostics						
System Testing ORNL						
System Testing MIT						
Shipping						
Installation						

CERN Infrastructure

	2005	2006	2006	2006	2006	2007
	Q4	Q1	Q2	Q3	Q4	Q1
Power Supply						
Site Preparations						
Installation						
DC Cabling						
AC Cabling						
Interlocks						
Commissioning						
Cryogenics						
TT10 Vent						
Cold Valve Box Fab.						
System Testing CERN						
Surface Preparations						
Tunnel Installations						
Commissioning						

