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The Neutrino Factory Target Concept
Maximize Pion/Muon Production
 Soft-pion Production
 High-Z materials
 High-Magnetic Field 

Meson Production - 16 GeV  p + W
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AGS E951 Experiment at BNL
Features: 
 24 GeV, 4Tp Proton Beam
1 cm, 2.5m/s Hg Jet
 No Magnetic Field

Key Results:
 Dispersal velocities  ≤ 10m/s
 Dispersal Delay ≥ 40μs

Experiment ran April 2001
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The MERIT  Experiment

MERcury Intense Target
Experiment ran Oct./Nov. 2007
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Scientific Goals of the 
CERN MERIT Experiment 

 Observe the effects of high-magnetic fields on:
 The free Hg jet
 The disruption of the Hg jet
 The velocity of the ejected Hg

 Observe the influence of proton beam on the Hg jet
 Vary the beam intensity
 Vary the beam structure

 Harmonic structure of the beam
 Time delays for multiple extractions

Demonstrate as a proof-of-principle the Neutrino 
Factory/Muon Collider Target Concept
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Proton Beam Characteristics

 PS was run in a harmonic 4, 8, and 16 mode
 Fast extraction can accommodate entire 2.5 s PS fill.
 Full single turn extraction at 24 GeV
 Partial/multiple extraction possible at 14 GeV
 First Beam on Target October 17 2007
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MERIT Beam Pulse Summary

30 Tp shot @ 24 GeV/c
• 115 kJ of beam power
• a PS machine record !

1 Tp = 1012 protons

MERIT was not to exceed 3  1015

protons on Hg to limit activation.
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MERIT Experiment at CERN
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Stabilization of Jet by High Magnet Field

Jet velocities: 15 m/s
Substantial surface perturbations mitigated by high-magnetic field.

0T                                   5 T                        10 T                              15 T

MHD simulations (R. Samulyak):
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Viewport 3:  Disruption Analysis

Shot 16014
• 14 GeV
• 12x1012 protons/pulse
• B‐field 10 T
• 500μs/frame

Disruption Length =16.5cm

1 cm

View of  Jet/Proton interaction aftermath
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Disruption Analysis

Disruption lengths reduced with higher magnetic fields
Disruption thresholds increased  with higher magnetic fields
Disruption lengths less than 2 interactions lengths (28cm)

14 GeV 24 GeV
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Beam 5016, Hg 15m/s,  100μs/frame, Total 1.6ms

15 Tp 14GeV
Proton Beam

Solenoid Field 
at 5T

Viewport 2: Velocity Analysis
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Ejection Velocity Analysis

Slope  velocity

tv = time at 
which filament 
is first visible

Study velocity of filaments of ejected mercury using the highest  
speed camera, at viewport 2, at frame periods of 25, 100 or 500 s
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Ejection Velocity Analysis  II

Shot 11019: 24-GeV, 10-Tp Beam, 10-T Field, 25µs/frame:
Peak Velocity—60m/s  Time delay ≥ 40μs (agrees with E-951)
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Peak Velocities
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Pump-Probe Studies
Test pion production by trailing  bunches after disruption of the 

mercury jet due to earlier bunches
At 14 GeV, the CERN PS can extract several bunches during one turn 

(pump), and then the remaining bunches at a later time (probe).
Pion production was monitored for both target-in and target-out events 

by a set of diamond diode detectors.

PUMP: 12 bunches, 12 
1012 protons

PROBE: 4 bunches, 
41012 protons

Diamond Detectors

Proton Beam

Hg Jet Target
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The Diamond Detector Reponses
These detectors 
showed effects of 
rapid depletion of the 
charge stored on the 
detector electrodes, 
followed by a slow RC 
recovery of the 
charge/voltage.
The beam-current 
transformer data was 
used to correct for 
fluctuations in the 
number of protons 
per bunch.

pCVD Diamond, beam-right 20deg, PS in h=16
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Both target-in and target-out data 
showed smaller signals, 
relative to the pump bunches, 
for probe bunches delayed by 
40, 350 and 700 s.

We therefore report a corrected 
probe/pump ratio:

Pump-Probe Data Analysis

target in target out

target in target out

target out

target out

Probe -Probe
Pump -Pump

Ratio = Probe
Pump

Results are consistent with no loss of pion production for bunch delays of 40 and 350 s, 
and a 5% loss (2.5- effect) of pion production for bunches delayed by 700 s.
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Study with 4 Tp + 4 Tp at 14 GeV, 10 T

Single-turn extraction
 0 delay, 8 Tp

4-Tp probe extracted on 
subsequent turn
 3.2 μs delay

4-Tp probe extracted 
after 2nd full turn
 5.8 μs Delay

Threshold of disruption is > 4 Tp at 14 Gev, 10 T.

Target supports a 14-GeV, 4-Tp beam at 172 
kHz rep rate without disruption.

PUMP: 8 bunches, 
4 1012 protons

PROBE: 8 bunches, 
41012 protons
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Proton Beam Bunch Structure
Magnetic field 
at 7T

Proton Beam 
at 14GeV

Less 
disruption 
with more 
particles per 
micro-
bunches
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MARS15 Study of the Hg Jet Target Geometry

Solenoid Axis

Hg Jet

Proton Beam
θBEAM

θCROSS

rJET

Previous results: Radius 5mm, θbeam =67mrad
Θcrossing = 33mrad
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Optimized Meson Production

Production of soft pions is 
most efficient  for a Hg 
target at        Ep ~ 6-8 GeV,   

Confirmation of low-energy 
dropoff by FLUKA highly 
desirable.
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Summary
MERIT experimental results
 Jet surface instabilities reduced by high-magnetic fields
 Proton beam induced Hg jet disruption confined to jet/beam overlap 
region

 20 m/s operations allows for 70Hz operations
 115kJ pulse containment demonstrated

8 MW operations demonstrated
 Hg jet disruption mitigated by magnetic field
 Hg ejection velocities reduced by magnetic field
 Pion production remains viable upto 350μs after previous beam impact
 170kHz operations possible for sub-disruption threshold beam intensities
 Hg jet disruptions influence by proton beam micro-structure
MARS15 simulations indicate maximal meson production effieciences at 
incoming proton beam energies of 6-8 GeV
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Future Work
Follow-up: Engineering study of a mercury loop + 20-T 
capture magnet, begun in  Factory Study 2, in the context of 
the International Design Study for a Neutrino Factory.
 Splash mitigation in the mercury beam dump.
 Possible drain of mercury out upstream end of magnets.
 Downstream beam window.
 Water-cooled tungsten-carbide shield of superconducting 

magnets.
 High-TC fabrication of the superconducting magnets.
 Improved nozzle for delivery of Hg jet


