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Abstract the absence of fields achieved only 20 MV/m at 2 T and 15

. . . V/min a4 T solenoid. A 200 MHz test cavity obtained
We discuss alternative designs of the muon capture fron . .
. . : > 20 MV/m in the absence of field but showed reduced
end of the Neutrino Factory International Design Stud

erformance in a weaker solenoid fringe field. Two mod-
(IDS). In the front end, a proton bunch on a target creat o
. e . els have been proposed for the breakdown; in one model
secondary pions that drift into a capture channel, decaying . : .
) - : itted electrons are focussed by the solenoidal field re-
into muons. A sequence of RF cavities forms the resultin

muon beams into strings of bunches of differing energiesgUItIng in cavity heating and subsequent damage [3]; in the

. . second the field induces a torsional force on electrons mov-
aligns the bunches to (nearly) equal central energies, an - . S .
o o . . o . 7Ing within the cavity surface resulting in the destructidn o
initiates ionization cooling. This design is affected by

o ) . - .. the cavity [4]. Operation of 200 MHz RF within a stronger
itations on accelerating gradients within magnetic fields. g : L
: A . .solenoid field will be tested soon [5], but it is not yet cer-
The effects of gradient limitations are explored, and mitiz_- : . . .
i i tain whether operation at baseline design parameters-s pos
gation strategies are presented. ! L A
sible. If limitations are found, we have several mitigation

strategies that can be considered in maintaining a practica

The goal of the IDS is to deliver a reference design report
by 2012 in which the physics requirements are specified
and the accelerator and detector systems are defined, with BERYLLIUM CAVITIES
an estimate of the required costs [1]. The baseline consists
of a proton source with 4MW beam power (50 Hz, 5-15 If surface heating is found to be the cause of RF cavity
GeV protons, 1-3 ns bunches,5 x10® protons/bunch), a breakdown, one solution may be to use a different material
target, capture and cooling section that produces pions tHar the cavity surface [6]. Beryllium has dual advantages
decay into muons and captures them into a small numb@f low density, leading to less energy deposition per unit
of bunches and an accelerator that takes the muons to ¥@ume, and low thermal expansion, perhaps resulting in
GeV and inserts them into storage rings. Muon decay #§SS damage. This may result in higher RF gradients. Un-
the straight sections provides high-energy neutrino bearffatunately Beryllium dust is toxic leading to a number of
for 100 kton neutrino detectors at 4000-7500 km baselind@ndling and safety issues that would need to be overcome.
with sufficient resolution to identify neutrino interaati.
The goal is> 10%! neutrinos/beamline/year in order to ob-
tain precise measurements of neutrino oscillation paramdM AGNETICALLY INSULATED CAVITIES

ters. The present paper discusses alternative muon capture

and cooling systems to the baseline discussed in [2]. A novel idea for improving the cavity’s gradient by sup-
pressing breakdown events caused by field emissions on
RE GRADIENT LIMITATIONS its surfaces has been proposed [7]. The concept involves

designing an RF cavity with walls parallel to the contour

Ther capture concept requires the use of RF fields nedines of the external magnetic fields, thereby redirecting
the Kilpatrick limit in 1-3 T solenoidal magnetic fields. In field-emitted electrons back to the cavity surface before
the buncher and rotator, RF cavities in a constant 1.5 T fiethey gain energy from the RF electric field. Such a cav-
are needed with gradients up to 13 MV/m at frequencies iity together with the proposed design of a lattice cell with
the range 200-320 MHz. The cooler uses 200 MHz RFagnetically insulated cavities for use in the final 6D cool-
operating at 15 MV/m within a 2.7 T alternating solenoidng for a muon collider is shown in Figure 1. Simulations
field. Recent experiments appear to show that RF breal8] examined the performance of those lattices and showed
down occurs at reduced gradient in magnetic fields. Athat they perform equally well to conventional latticestwit
800 MHz Cu cavity that ran with peak field of 40 MV/m in pillbox cavities.



MAGNETICALLY SHIELDED RF

*t () CAVITIES
30k
We have developed [10] a lattice for the cooling section

that has a much longer cell length and shielding of cavi-
20k ties, such that the magnetic field in the cavities:i§.1 T.
The increased cell length results in either weaker focgssin
15k and a worse cooling performance, or decreased acceptance
and a worse transmission. However, with liquid Bb-
sorbers, adequate cooling can be obtained. The advantage
of this method is that the cooling channel requires little
additional hardware development and can reproduce the
15 nominal performance of the IDS baseline cooling channel,
albeit with an increased hardware requirement and hence
additional cost. In Figure 2 a schematic of the shielded
cooling channel is presented. A 3 m half cell length has

b
( ) been used, enabling an RF packing fraction of 1/3. Due
I I l to the slight residual field and requirement for high gra-
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dient on-axis, normal conducting RF would be used. The
coils have a 400 mm inner radius, 100 mm radial thickness
and are 1 metre in length. Coil current densities are in the
range 15-25 A/mrhy indicating superconducting magnets
might be preferable. The low current density relative to the
FS2A baseline is seen as an advantage, as it may enable
more radiation-hard superconductor and a more conserva-
tive temperature margin to be used in a linac that may have
significant losses.
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Figure 1: (a) Magnetically insulated cavity modelled iN a—p- v
Poisson Superfish; (b) a cell of a muon collider lattice witt Beam axis
magnetically insulated cavities. 7 % 7

GAS-FILLED RF CAVITIES

Figure 2: Schematic of the shielded RF lattice. Coils are
shown with diagonal hatching, RF cavities vertical hatch-

_ ) ~ing and Hydrogen absorbers as filled ellipses.
Experiments have shown that, lgas-filled RF cavities

suppress RF breakdown in high magnetic fields, and can
provide superior cooling to LiH slabs, since, Has less  In Figure 3 the rate of particles in a nominal acceler-
multiple scattering. Replacement of the LiH slabs requireator acceptance is shown. Two variants of the shielded
a pressure of 120 atm ofJHat room temperature, which lattice are compared with the FS2A baseline [11]. The
may be challenging to implement. Gallardo and Zisman [djrst variant has opticaB of 1.2 m at the absorber and
have proposed to use only sufficient pressure to supprégéerence momentum of 230 MeV/c, with a comparable
breakdown (10-34 atm at room temperature) while introamount of hardware to the FS2A baseline. The other vari-
ducing thinner LiH slabs to provide the added energy los@nt has a short section of acceleration, enabling better ac-
This will provide adequate cooling with a minimal numberceptance, followed by a cooling section. The optidas
and thickness of vacuum windows. also 1.2 m at the absorber but the reference momentum is
330 MeV/c. This leads to a better cooling performance but,
There is a concern that acceleration of ionization ele@sdp/p in each absorber is smaller, the cooling channel is
trons produced in the gas may drain energy from the cadenger, more hardware is required and cost is expected to
ties and this is under investigation be greater.



able RF and magnetic configuration.
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CONCLUSIONS

The muon front end group of the IDS has examined a
number of options for alternative lattices that may be used
to improve the front end performance and overcome obsta-
cles such as the possibility of enhanced RF breakdowns in
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Muon Rate in accelerator acceptance

Shielded 230 MeVic (Normalised) the presence of magnetic fields. Options have been demon-
0.01 strated to match the baseline, but either require further
F2A Baseline hardware development to prove feasibility or are expected

o

to be more costly.
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