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A counterintuitive finding was that a short Taper

Solenoid outperforms a long adiabatic Taper, as
the shorter Taper deliveries a denser distribution
of muons in longitudinal phase space, which
The shorter taper results in a denser distribution in permits more effective bunch formation in the
Mercury pool + Buncher and Phase Rotator, despite the fact that
Splash mitigator the longer Taper deliveries more muons to the
\ / Buncher/Phase Rotator. ) Buncher.
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Time-longitudinal momentum phase space distribution at
the end of Decay Channel for a short (4 m) Taper and long
(40 m) Taper (shifted in momentum & time).

longitudinal phase space, which is preferable for the
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