Study of Pion Capture Solenoids for PRISM

H.Ohnishi AB

M. Aoki ^C, Y. Ajima ^A, N. Fukasawa ^{AD}, K. Ishibashi ^B, Y. Kuno ^C, T. Miura ^A, K. Nakahara ^C, T. Nakamoto ^A, N. Nosaka ^C, M. Numajiri ^A, A. Sato ^C, N. Shigyo ^B, A. Yamamoto ^A, T. Yokoi ^A and K. Yoshimura ^A

> KEK ^A, Kyushu University ^B, Osaka University ^C, Tokyo University of Science ^D

> > Nufact'03 June 7, 2003

Outline

- Introduction
 - Pion capture solenoid for PRISM
- A Model Experiment to Measure Radiation Heat Load
 - Experimental set up
 - Measurement
 - Results
 - Comparison with simulation results (MARS)
- Further R&D plan
- Summary

Pion Capture Solenoid for PRISM

- PRISM needs the SC solenoid required a high field ($B_c = 6 \sim 12 \text{ T}$)
 - Keep the solenoid at low temperature
- The solenoid is heated by radiations from the target
- To reduce the radiation heat load, thick radiation shield is needed
- We estimate the radiation heat load with simulation code MARS, but the accuracy of simulation results have not been studied
- → We experimentally evaluate the accuracy of simulation results.

A Model Experiment to Measure Radiation Heat Load

- Radiation heating in a model solenoid (mockup) was precisely measured
- The experimental results were compared with the result obtained by MARS

Experimental Conditions (KEK 12GeV-PS)

Beam parameters

- 12 GeV proton
- Intensity $\sim 10^{11}$ (protons/sec)
- Slow extraction

Experimental area

- At upstream of EP2-A dump

• Sensitive measurement of radiation heat load to the mockup with the cryo-calorimeter

Experimental Installation

Profile & Intensity of Primary Protons

Cryo-calorimeter

Highly sensitive measurement by cooling the mockup (20 K)

- Highly sensitive thermometers (resolution < 20 mK)
- Quick response because of small specific heat

Mockup temperature rise up $\Delta T = Q \times K$ at thermal equilibrium state

Q : Heat load

K : Thermal conductance determined by thermal shunt

How to Measure Radiation Heat Load

Typical Experimental Data

Thermal balance

Experimental Results

Overall error is nearly equal to 7 %

Comparison with simulation results

Experimantal Summary

- We have performed direct measurement of radiation heat load.
- Experimental results are 20-30% higher than simulation results
- Experimental results show the consistent dependency with simulation.

Further R&D Plan for PRISM Capture Solenoid

Base-line Parameters for PRISM Capture Solenoid

- Boundary condition
 - The maximum transverse momentum

$$P_t = 300 \times B \times R/2 = 90 \text{ MeV/c}$$

• Central field

$$B_c = 6 T$$

• Effective bore R = 0.1 m

Solenoid Parameters

Parameters

- Central field 6 T
- Coil length (× 2 target length) 1.6 m
- Stored energy / solenoid mass ratio 10 kJ/kg
- Solenoid inner radius
- Al stabilized NbTi cable

Radial thickness

- Beam pipe
- Vacuum insulation 0.05 m

Χ

Radiation Heat Load & Stored energy vs. Solenoid radius

Preliminary design Parameters

	PRISM	
Central field(T)	6	
Shield thickness(m)	0.25	
Solenoid radius(m)	0.45~0.55	
Length(m)	1.6	
stored energy(MJ)	16	
Heat load(W)	470	

Small Size R&D Solenoid

	PRISM	R&D(1/2.5scale)	
Central field(T)	6	3~6	
Shield thickness(m)	0.25	-	
Solenoid radius(m)	0.45~0.55	0.2~0.24	
Length(m)	1.6	0.4~0.6	
stored energy(MJ)	16	0.5~1	
Heat load(W)	470	$470/(2.5)^3 = 30$	

Summary

- We have performed direct measurement of radiation heat load
- Experimental results are 20-30% higher than simulation results
- Experimental results show the consistent dependency of target position with simulation
- We are planning R&D with a small size solenoid

Error Breakdown

Target position (mm)	-80	0	80
*12GeV proton – Cu	5.1	5.1	5.1
²⁴ Na production cross section			
Ge detector efficiency	4.3	4.3	4.3
Fluctuation of beam intensity	2.1	0.8	1.3
Measurement of heat load	<1	<1	<1
Total error	7.0	6.8	6.8
			(%)

* T.Asano et al, 'Target dependence of charge distributions in spallation reactions of medium-mass nuclei with 12GeV protons', Phys. Rev. C 28, 1718(1983)

Mockup & Target

Heat load measurement has need to thermal equilibrium state

- Target position move to up-stream
- → higher radiation heat load
- → Many secondary particles fly out forward

Difference between T_{beam} and T_{heater}

Correcting Q_{beam} with difference between T_{beam} and T_{heater}

Effect of the difference between T_{beam} and $T_{heater} < 1\%$

Fluctuation of Beam Intensity

Fluctuation of beam intensity (protons/10min) < 3%

T_{beam} & T_{heater} at Various Thermometer

Effect of Outside Mockup

Temperature of outside mockup is nearly constant. Effect of outside mockup to $T_{beam} \& T_{heater}$ hardly changed.