### Why are we discussing targets?

Stress induced plastic deformation



CERN-PS-booster 30 Tp on ISOLDE targets:

Shock induced rupture of confinement



# ISS Targetry Status, Issues & Plans

- Solid targets
  - Material studies; properties under irradiation of metals and graphite
  - Shocks and super metals
  - Simulation of the CNGS target response to a p-pulse
  - Measurement of shock waves
- Molten metal jet targets
  - Observation of shock waves
  - Magnetohydrodynamics experiment
  - Cavitation
  - Simulation
- Short intense proton pulses (ns)

2

# Material tests after irradiation



Ref: N.Simos et.at BNL



Few dpas (displacement per atom) expected in materials surrounding the target

# C-composite

#### Th-expansion

Ref: N.Simos et.at BNL



#### Th-conductivity

Ref: J.P. Bonal et C.H. Wu Nucl. Mat. 277 (2000)



Fig. 4. Thermal conductivity A 05(||) normalized at 600°C as a function of neutron damage.

# **CNGS** target test at ISOLDE

ISOLDE PS-booster p-beam 4 bunches of 8 TP within 2.4 μs



5

# CNGS test at the SPS horizontal beam scan



Displaced beam results in bending

# **Qualitative Comparison**

experiment ↔ simulation

Ref: R. Wilfinger PhD thesis TUV



6 x 10<sup>12</sup> p.o.t., CNGS 1<sup>st</sup> segment TT40, 25th Oct.

3.5 x 10<sup>13</sup> p.o.t. CNGS 2<sup>nd</sup> segment L. Massidda and F. Mura, CRS4

# Damping constants of each eigen-modes



## Thermal Stress Waves in INVAR-36





Longitudinal

Ref: R. Wilfinger PhD thesis TUV

# BNL-CERN thimble test

1st P-bunch 1.8×10<sup>12</sup> ppb dt: 100 ns

 $24 GeV p^+$ 











Timing: 0.0, 0.5, 1.6, 3.4 ms, shutter 25 µs

22 September 2

8 kHz camera

J. Lettry AB-ATB

 $V_{splash} \sim 20-40 \text{ m/s}$ 



### Hadronic cascade vs. splash velocities



22 September 2005

J. Lettry AB-ATB A. Fabich, J. Lettry

11



# Hg-Jet test BNL E-951

25th April 2001 #4



Pictures timing

[ms]

0.00

0.25

0.50

1.75

4.50

10.75

29.75

p-bunch:  $3.8 \times 10^{12}$  ppb, 26GeV

150 ns

Hg- jet: diameter ~ 1cm

jet-velocity ~ 2.5 m/s

"explosion" velocity ~ 10 m/s

22 September 2005

J. Lettry AB-ATB



Jet velocities and shapes, injection at 6°, P(Hg) = 64 bar

Ref: A. Fabich PhD. thesis TUV









~10ms after the tip of the Hg-jet



# MHD damping of the instabilities of a Hg-jet

Ref: A. Fabich PhD. thesis TUV

The radius is measured at a fixed position, the jet velocity is 11 m/s



## Simulation: R. Samulyak BNL

10 T





# Water jet ripples generated by a 8 mJ Laser cavitation bubble (~50 µs after collapse)

Ref: E. Robert Dipl. thesis EPFL



# Mercury target: evolution after the third proton pulse (20 - 35 microseconds)





Brookhaven Science Associates U.S. Department of Energy

R. Samulyak



# Heat flow, mass flow

- He-cooling forced convection
  - Ta-beads
- Radiation cooling
  - Levitating ring
- New material for each proton pulse (20-40 kg/s)
  - Chain saw, bullets and molten metal Jets

Molten metal jets were proposed to:

- a) Avoid deformation of solids or high speed mechanics under vacuum
- b) Reduce the effects of modification of the material constants with irradiation
- c) Attempt to increase the power density of the beam beyond any solid.

### Issues or new technologies to be established

- Molten metal targets
  - Hight pressure high velocity molten metal fluid dynamics
    - · Cavitation in the piping
    - Corrosion
    - Recuperation of high velocity splashes
  - Purification of the molten metal circuits
- Solid targets
  - Effect of chemical impurities on material properties
  - High velocity mechanics under vacuum
  - Compaction of beads
- Component reliability or life time vs. exchange time
  - Horns
  - 20 T magnets
- Simulation codes
  - Beyond simple Energy deposition FLUKA,
  - Shock transport Kurchatov
  - 3d-Shocks with MHD BNL
  - Shocks CRS4
- Optical measurement techniques in high radiation environement
- MHD of MERIT's injector
- · Activation of components, inventory of specific activities vs. time
  - Radioactive waste handling
  - Internal transport, intermediate storage
  - End disposal
- Experimental areas dedicated to target tests (highest radiotoxicity)

# Particle multiplicity: 1 GeV protons in Hg

50.00% BY IONISATION,
21.80% BY EM-CASCADE,
9.50% BY LOW ENERGY NEUTRONS,
2.60% BY NUCLEAR RECOILS AND HEAVY FRAGMENTS,



Ref: Y. Kadi, A. Herrera

# Short time scale ns pulses

For ns-pulse duration, all protons are within a 30 cm target. The multiplicity of secondaries is ~few hundred particles above keV and few millions electron – ion pairs

Even if generated within 1 ns by 10<sup>14</sup> GeV protons the particle density is still very small ppM compared to the atomic one. However, is this charge state distribution within the solid /

liquid negligible in view of the respective mobilities of ions and electrons that are quite different?

What differs in the response of metals (conduction band) and moderate density graphite?

```
_{-e} \sim 10^{-16} s - characteristic time of the electron - electron interaction; _{-eph} \sim 10^{-13} s - characteristic time of the electron - phonon interaction; _{-ph-ph} \sim 10^{-12} \div 10^{-11}s - characteristic time of phonon - phonon interaction; A.I. Ryazanov Kurchatov Inst.
```

22 September 2005

### Plans (and wishes that may only become true with adequate funding)

- Experiments:
  - MERIT (n-ToF-011)
  - P-induced shock on high temperature Ta-cylinder with a VISAR (RAL)
- Material studies
  - Irradiation at high temperature (EURISOL DS)
  - Mechanical tests of irradiated materials ...
  - Material tests via eigen-frequencies ...
- Simulation codes BNL, FLUKA, Kurchatov, CRS4
- High power target test station ...

#### **High Powered Target Test Facility (HPTTF)**.

The HPTTF will be discussed, in detail, at the upcoming High Power Targetry Workshop in October 2005 at ORNL/SNS.

Thanks to all contributors