

Tests of Targets

Interacting with an Intense Proton Pulse

K.T. McDonald

Princeton U.

December 15, 2000

Targetry Workshop, BNL

http://puhep1.princeton.edu/mumu/target/

The Need for a Moving Target

For high yield of pions from a target in a 24 GeV proton beam, use a high-Z material of ≈ 1 cm transverse dimension.

Peak energy deposition is $U \approx 100$ J/gm from a nsec pulse of 1.6×10^{13} protons with radius $\sigma_r = 1.5$ mm.

 \Rightarrow A static, high-Z target would melt after a few beam pulses, unless in contact with a massive heat sink.

But, massive heat sink \Rightarrow poor pion collection efficiency.

Solution: a moving target, such as a **liquid metal jet**. KIRK T. MCDONALD DECEMBER 15, 2000

Properties of Some Candidate Target Materials

Element	Z	Density	Melting	Boiling	Heat	Heat of	Thermal	Resist.	Thermal	
			Temp.	Temp.	Cap.	Vapor.	Cond.	$(\mu\Omega\text{-cm})$	Exp.	
		(g/cm^3)	$(^{\circ}C)$	$(^{\circ}C)$	$(J/g-^{\circ}C)$	(J/g)	$(W/cm-^{\circ}C)$		$(10^{-5}/^{\circ}\mathrm{C})$	
Copper	29	8.96	1087	2567	0.39	4796	4.01	1.7	1.7	
Zinc	30	7.1	420	906	0.39	1733	1.16	6.0	3.1	
Gallium	31	5.9	30	2204	0.33	3712	0.4	26^{\dagger}	12	
Indium	49	7.3	156	2073	0.23	2016	0.82	10	3.2	
Tin	50	7.3	232	2270	0.18	2487	0.67	13	2.2	
Mercury	80	13.6	-39	357	0.14	295	0.087	94^{\dagger}	6.1	
Lead	82	11.35	327	1750	0.16	858	0.35	80^{\dagger}	2.9	
Bismuth	83	9.7	271	1610	0.12	857	0.079	120	1.3	

† liquid

Candidate Liquid Metals

-

Approximate	
melting point, °C	Approximate composition, wt %
185	48 bismuth, 52 thallium (eutectic)
180	38 lead, 62 tin (eutectic)
140	60 bismuth, 40 cadmium (eutectic)
140	58 bismuth, 42 tin (eutectic)
130	56 bismuth, 40 tin, 4 zinc (eutectic)
125	44.5 bismuth, 55.5 lead (eutectic)
120	25 cadmium, 75 indium (eutectic)
117	48 tin, 52 indium (eutectic)
105	48 bismuth, 28.5 lead, 14.5 tin, 9.0 antimony
	(matrix alloy)
93	50 bismuth, 25 lead, 25 tin
91.5	51.6 bismuth, 40.2 lead, 8.2 cadmium (eutectic)
71.7-69.7	50 bismuth, 25 lead, 12.5 tin, 12.5 cadmium (Wood's metal)
70	33 bismuth, 67 indium (eutectic)
70	50 bismuth, 26.7 lead, 13.3 tin, 10 cadmium (eutectic)
60.5	32.5 bismuth, 16.5 tin, 51 indium
58.2	49.5 bismuth, 17.6 lead, 11.6 tin, 21.3 indium
46.5	40.63 bismuth, 22.11 lead, 10.65 tin, 8.2 cadmium, 18.1 indium
33	32 potassium, 68 rubidium (eutectic)
17	12 tin, 6 zinc, 82 gallium (eutectic)
10.8	12.5 tin, 17.6 indium, 69.8 gallium (eutectic)
10.7	16 tin, 21.5 indium, 62.5 gallium (eutectic)
-8	8 sodium, 92 rubidium (eutectic)
-11	22 sodium, 78 potassium (eutectic)
-30	5 sodium, 95 cesium (eutectic)
-40	87 cesium, 13 rubidium (eutectic)
-48	23 potassium, 77 cesium (eutectic)

Lead Alloys

SHEET	BoB 16.80	\$10/30				
Th:	Kirk Mc Do	nald				

330 Belmont Avenue, Brooklyn, New York 11207 (718)-342-4900 • TWX 710-584-2296 • FAX 718-342-0175

\$13.25 \$\$4A5

\$51.3568

BELMONT LOW MELTING ALLOYS - Used as Production Aids

-	EUTECTIC ALLOYS					NON EUTECTIC ALLOYS			
PHYSICAL PROPERTIES 8 NOMINAL COMPOSITION	BELMONT ALLOY 2451	BELMONT ALLOY 2491	BELMONT ALLOY 2505	BELMONT ALLOY 2562	BELMONT ALLOY 2581	BELMONT ALLOY 2431	BELMONT ALLOY 2481	BELMONT ALLOY 2405	
Melting Temperature (°F.) Range (°F.)	117-117	136 136-136	158 158-158	255 255-255	281 281-281	(No definite 160-190	melting point, see 218-440	yield temp.) 281-338	
Yield Tempi. (°F.) Weight Lb./In. ³ Specific Gravity 20°C Tensile Lb./In. ²	117 .32 8.9 5400	136 .31 8.8 6300	158 .339 9.4 5990	255 .380 10.3 6400	281 .315 8.7 8000	162.5 .341 9.4 5400	240 .343 9.5 13000	302 .296 8.2 8000	
*Elongation in 2" Slow Loading % Brinell Hardness # *Specific Heat Liquid	1.5 12 .035	50 14 .032	200 9.2 .040	60-70 10.2 .042	200* 22 .045	220* 9 .040	Less than 1% 19 .04	200* 22 .047	
*Specific Heat Solid *Latent Heat — Fusion Btu./LB.	.035 6	.032 8	.040 14	.03+ 7.2	.045 20	.040 10	.045	.047 22	
Coefficient of Thermal Expansion	.000025/°C.	.000023/°C.	.000022/°C.	.000021/°C.	.000015/°C.	.000024/°C.	.000022/°C.	.000015/	
Thermal Conductivity (Solid) Cal/Cm ² /°C/Sec .94 = Copper	-	a 	* .045	*.04	*.05	*.05	-	•.09	
Conductivity (Electrical) Com- pared with Pure Copper Resistivity, OHMS based on	3.34%	2.43%	4.17%	1.75%	5.00%	4.27%	2.57%	7.77%	
volume standard (Meter, MM²)	.5180	.7081	.4135	.8825	.3445	.4037	.6696	.2219	
*Maximum Load — 30 Seconds Lb. — In. ²			10000	8000	15000	9000	16000	15000	
*Maximum Load — 5 Minutes Lb. — In. ²		200 H	4000	4000	9000	3800	10000	9500	
*Safe Load — Sustained Lb. — In. ²		-	300	300	500	300	300	500	
Volume Change (Liquid to Solid)	-1.4%	-1.35%	-1.7%	-1.5%	+0.77%		-1.5%	*+0.5%	
Volume Change (Linear growth after solidification.)	Less Than 0.05%	Less Than 0.05%	0.6%	0.3%	0.05%	0.3%	0.5%	*0%	
GROWTH/SHRINKAGE CHARACTERISTICS TIME AFTER CASTING	FIGURES INDICATED ARE IN INCHES PER INCH AS DETERMINED FROM CUMULATIVE GROWTH MEASURED AS THE DIFFERENCE IN LENGTH BETWEEN MOLD AND TEST BAR DIMENSIONS IN A TEST BAR \mathcal{H}^* x \mathcal{H}^* x 10".								
2 Minutes 6 Minutes 30 Minutes	+.0005 +.0002 .0000	+.0003 +.0002 +.0001	+.0025 +.0027 +.0045	0008 0011 0010	+.0007 +.0007 +.0006	0004 0007 0009	+.0008 +.0014 +.0047	0001 0001 0001	
1 Hour 2 Hours 5 Hours	0001 0002 0002	.0000 0001 0002	+.0051 +.0051 +.0051	0008 0004 .0000	+.0006 +.0006 +.0005	.0000 +.0016 +.0018	+.0048 +.0048 +.0049	0001 0001 0001	
7 Hours 10 Hours 24 Hours	0002 0002 0002	0002 0002 0002	+.0051 +.0051 +.0051	+.0001 +.0003 +.0008	+.0005 +.0005 +.0005	+.0019 +.0019 +.0022	+.0050 +.0050 +.0051	0001 0001 0001	
96 Hours 200 Hours 500 Hours	0002 0002 0002	0002 0002 0002	+.0053 +.0055 +.0057	+.0015 +.0019 +.0022	+.0005 +.0005 +.0005	+.0025 +.0025 +.0025	+.0055 +.0058 +.0061	0001 0001 0001	
Compositions (%): Bismuth Lead Tin Cadmium	44.7 22.6 8.3 5.3	49.0 18.0 12.0	50.0 26.7 13.3 10.0	55.5 44.5	58.0 42.0	42.5 37.7 11.3 8.5	48.0 28.5 14.5	40.0 60.0	

* APPROXIMATE VALUES

Belmont: The Non Ferrous Specialists

-Unmatched Variety of Non Ferrous Metals and Alloys-

-Standard and Custom Compositions and Shapes
 -Standard and Custom Compositions and Shapes
 • Casting Metals, Alloys, Additions • Joining Metals & Alloys • Low-Melting (Fusible) Alloys
 • Cathodic Anodes • Plating Anodes • Wire Specialties • Chemical Metals • Mercury

Lead Alloy Phase Diagrams

Lead-Tin-Bismuth, melting point = 95C:

Beam-Induced Stress in Targets

Energy deposition $U (J/gm) \Rightarrow$ Peak stress, $P \approx \frac{\alpha_V E_V U}{C}$, where

 $\alpha_V = 3\alpha$ is the volume coefficient of thermal expansion, E_V is the bulk modulus (inverse of compressibility), C is the heat capacity per unit mass.

Mercury: $\alpha_V = 180 \times 10^{-6} \text{ K}^{-1}, E_V = 25 \text{ GPa},$ and $C = 138 \text{ J K}^{-1} \text{ kg}^{-1}.$

Then, $U = 100 \text{ J/gm} \Rightarrow P \approx 3000 \text{ MPa}$, many times the tensile strength of steel.

- Disruption of the jet by the beam is likely.
- The jet may break up into droplets.
- Propagation of the stress waves may lead to damage of any surface in contact with the jet, *i.e.*, pipes or nozzles.

• May be necessary to chop the jet into isolated segments. KIRK T. MCDONALD DECEMBER 15, 2000

Pressure-Wave Damage to Liquid Targets in Pipes

FRONTIER Simulation of Beam-Jet Interaction

— R. Samulyak

Critical point : $T_c = 1750$ K, $P_c = 172$ MPa, $V_c = 43$ cm³mol⁻¹ Boiling point : $T_b = 629.84$ K, $P_b = 0.1$ MPa, $\rho = 13.546$ g·cm⁻³

Beam + Hg jet (no magnetic field), t = 0:

Beam + Hg jet (no magnetic field), $t = 6 \ \mu s$:

Magnetohydrodynamics being added to the code. KIRK T. MCDONALD DECEMBER 15, 2000

Estimate of Droplet Velocity if the Jet Breaks Up

The pressure wave propagates to the surface in time $\Delta t = r/v_s = (.005 \text{ m})/(1300 \text{ m/s}) = 4 \ \mu \text{s}$ for mercury.

 $[v_s \text{ may be temporarily reduced by the beam energy deposition.}]$ The radial expansion of the jet is $\Delta r \approx \frac{\alpha U r}{C}$.

 \Rightarrow Radial velocity of matter is $v_r \approx \frac{\Delta r}{\Delta t} \approx \frac{\alpha U v_s}{C} \approx 50$ m/s.

The target chamber windows must withstand the possible impact of tens of grams of liquid droplets with this velocity.

[Inside a strong magnetic field, the motion of the droplets would be damped.]

For a mercury target, some 10-20% of the material may be vaporized by a single pulse.

KIRK T. MCDONALD

December 15, 2000

Experiments Needed!

- A single intense proton pulse on a liquid target is an experiment by itself.
- "Pulse-on-demand" operation parasitic to other use of the AGS.
- A3 beamline with up to 1.6×10^{13} protons/pulse.
- Pulse length ≈ 30 ns, σ_r as small as 1 mm.
- Can have a train of 6 pulses, 30 msec apart.
- Primary diagnostic is visual, using a high-speed camera (16 frames in as little as 16 μ sec) and shadow photography.
- Liquid metals other than mercury wet optical windows,
 ⇒ May get only one chance to make a measurement.
- Containment of "splash" is a key operational issue.
- Each beam pulse delivers a dose of 5-50 krad to the inner optical window.

Quartz good for 1 Grad, but "glass" browns at \leq 1 Mrad.

Plan View of the A3 Beamline

Elevation View of the A3 Beamline

Quick Search:

Go

Site Contents

Applications

Products

Application Support

About SMD

Press Room

Careers

Contact SMD

Home

Menus require v4+ browser v3 browsers: click here The Neutrino Factory and Muon Collider Collaboration

High-Speed Camera System

SMD 64K1M Camera • 240x240, 1,000,000fps, 12 bits

SMD has solved the problem of real-world interface to hyper-speed cameras

Contents: Features | Applications | Description | Specifications

Features

- Ultra High Frame Rate with Electronic Shutter. Up to one million frames per second at 240x240 resolution from a custom-designed interline transfer sensor.
- High Quality Images. The custom sensor's electronic shutter allows crisp, clear images without smearing, even at maximum frame rate. True 12-bit dynamic range preserves superior image quality, even in low light conditions.
- Flexible Data Readout. The sensors's multiple parallel channels of image data are digitized, buffered, and output through four 12-bit wide ports at 10MHz each. Maximum readout is 15 bursts per second of 17 consecutive frames.
- Compact and lightweight. Small form factor to ease system integration.
- Internal/External Sync. Asynchronous-mode frame capture, externally triggerable to within 250 nanoseconds.
- Extended Spectral Response. Sensitive to UV and near IR wavelengths.

Pulsed laser diode for illumination (20W if CW):

Target Test Program

- 1. Solid targets:
 - First tests: **carbon rod** at room temp, with strain sensors (ORNL).
 - Option for carbon rod at ≈ 2000 C (BNL).
 - Option for test of material for a band target; should have strain sensors.
 - Option for Schlieren photography of stress waves in a quartz target (ANL).
- 2. Liquid targets:
 - Horizontal mercury jet (BNL).
 - Option for vertical mercury jet (BNL/Princeton).
 - Option for mercury in "trough" and/or pipe (Princeton).
 - Option for "Wood's metal" (Princeton/BNL).