
The Neutrino Factory and Muon Collider Collaboration

Lab Tests of the Magnetohydrodynamics of Liquid Metal Jets

S. Oshima et al., JSME Int. J. 30, 437 (1987).

K.T. McDonald Princeton U. December 15, 2000

Targetry Workshop, BNL

KIRK T. MCDONALD

December 15, 2000

Issues

A strong magnetic field can damp some hydrodynamic instabilitites of a liquid metal jet:

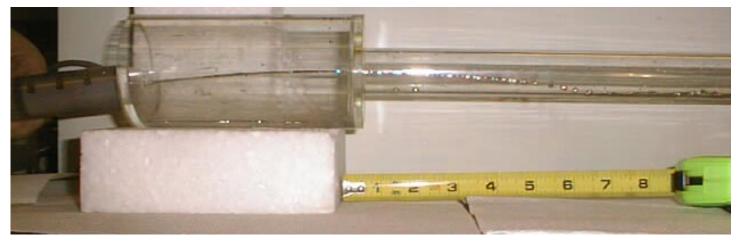
- Breakup due to surface tension (Rayleigh instability).
- Some of the perturbations due to the proton beam.

But it is difficult to get a metal into a magnet:

- If conductivity is too high, almost impossible to enter the field.
- Radial pinch on entering a solenoid \Rightarrow increase in internal pressure.
- Axial retarding force on entering and exiting a solenoid.
- Strong shear forces, especially if enter at an angle.
- Quadrupole deformation due to transverse field.

Calculations give some confidence, but laboratory confirmation is needed that a liquid metal jet can enter the solenoid without undue distortion.

KIRK T. MCDONALD


The Neutrino Factory and Muon Collider Collaboration

A First Test

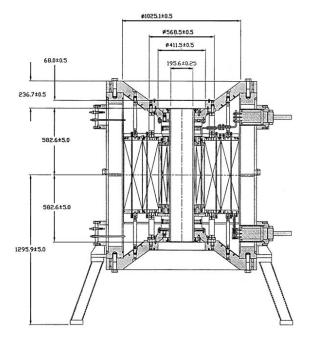
Use a 5-T solenoidwith 4-cm warm bore, and coil inner diameter of 6 cm.

• Mercury jet via a syringe with 1.5-mm diameter aperture.

- Jet velocity up to 3 m/s, determined from sagitta of arc.
- No noticeable difference in jet motion at 0 T and 5 T.

KIRK T. MCDONALD

December 15, 2000

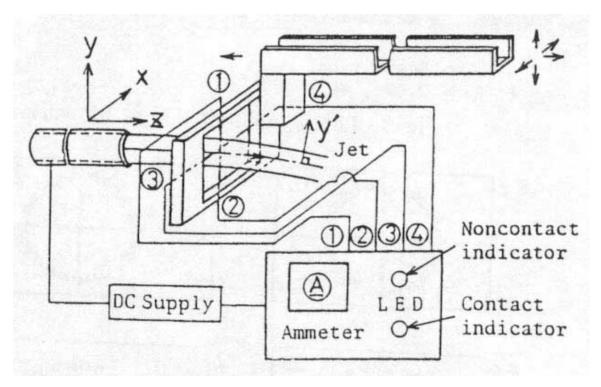


Scaling Up to a Neutrino Factory

• Axial retardation of the jet as it enters a solenoid scales as

$$rac{\sigma r^2 B^2}{
ho D}$$
 .

- For B = 20 T, D = 30 cm and r = 5 mm, the retardation is 320 times larger than in the first test.
- \Rightarrow Need for further test, at parameters close to those for a neutrino factory.
- Best option: 20-T, 20-cm diameter-warm-bore resistive magnet facility at the NHMFL (or similar facility in Grenoble).



The Neutrino Factory and Muon Collider Collaboration

Goals of the Test

Characterize the distortion of a mercury jet entering a 20-T solenoid.

- Types of distortion: deflection, shear, quadrupole.
- Dependence on jet velocity, radius, angle to magnetic axis, and proximity of nozzle to the magnet.
- Effect of pulsed *vs.* steady jet.
- Diagnostics: primarily visual; perhaps wire scan in phase 2.

S. Oshima *et al.*, JSME Int. J. **30**, 437 (1987). Kirk T. McDonald December 15, 2000