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Behavior of Conducting Solid or Liquid Jet
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1) Paraxial; 2) Transverse; 3) Oblique
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Abstract. When a conductor moves through a nonuniform magnetic field,
eddy currents flow that interact with the field to decelerate the conductor
and perhaps change its trajectory, orientation and, if a liquid, shape. A rod
of radius a = 1 cm and the density and electrical conductivity of melted gal-
lium (γ = 6.1 g/cm3, ρ = 26 µΩ cm) will decelerate 6.3 m/s in a 0.5 m ramp
of paraxial field with a constant gradient g of 40 T/m (∆B = 20 T). The de-
celeration is proportional to a2g∆B/γρ, independent of the velocity. The bar
decelerates about twice as much in a 20 T, 0.5 m ramp of transverse field.
A bar traveling at a shallow angle to such a field decelerates about 6.3 m/s.
If the bar is 0.25 m long and moves at 20 m/s, it aligns with the field in ~10
ms, during which time it advances ~0.2 m.

Assumptions: In all cases the conductor is a cylindrical rod or rectangular bar of

length l and density γ . The electrical resistivity ρ is sufficiently high that the field

generated by eddy currents never rivals the ambient magnetic field. Currents respond

instantaneously to voltages, according to Ohm’s Law, without any inductive delay.

Case (1): Rod Moving in Paraxial Field: 1a) Linear Ramp; 1b) Field of Long Coil



In case (1) the conductor is a rod of radius a that is coaxial with an axisymmetric

magnetic field and moves at a velocity v along their common z axis. Along the axis

the field is purely axial:
v
B z B z z( , ) ( ) $0 = . Zero divergence of

v
B implies that the radial

component of field near the axis is, to first order, B r z r g zr ( , ) ( ) /= − 2 , where g z( ) is

the axial field gradient dB z dz( ) / . A coaxial loop of radius r encircles a flux Φ( , )r z

of π r B z2 ( ) ; the voltage induced around the loop is:

V r z t
d r z

dt
( , , )

( , )= − Φ = −πr
dB z
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2 ( ) = −πr
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dz
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2 ( ) = −π r g z v t2 ( ) ( ) .

The voltage induces a circumferential current density:

j r z t
V r z t

r
( , , )

( , , )=
2π ρ

= − r
g z v t

2ρ
( ) ( ) .

The current density interacts with the radial component of magnetic field to generate an

axial force per unit volume:

f r z t j r z t B r zz r( , , ) ( , , ) ( , )= − = −r g z v t2 2 4( ) ( ) / ρ .

Note that this is proportional to −v t( ) , and so the force always is one of deceleration.

The current density also interacts with the axial magnetic field to generate a radial

force whose density is:

f r z t j r z t B zr z( , , ) ( , , ) ( )= = −r g z B z v tz( ) ( ) ( ) / 2ρ .

In the paraxial case the magnitude of radial force density is much larger than the axial

one, by the ratio B Bz r/ . This force compresses the conductor radially as it enters the

field and tends radially to disperse a conducting jet as it exits. However, unless arcing

maintains the circumferential path for current to flow, eddy currents should collapse,

eliminating the forces on the jet—axial as well as radial. In any case, the radial bound-

ary of the jet should remain within the confines of its enclosing tube of force. Any con-

ductor whose boundary follows a tube of force sees no change in flux linkage, and

hence develops no induced voltage, eddy current or force. Therefore, a liquid jet

emerging from a field should expand no more rapidly than do the flux lines; its diameter

should not double until the field has fallen by a factor of four.



Integration of the axial force density gives the total force F z t( , ) on the rod. Inte-

grate with respect to r from 0 to a , and with respect to z from the rod’s trailing edge

z z l− ≡ − to its leading edge z . Division by the mass of the rod, m a l= πγ 2 , gives the

acceleration, dv dt/ :

F z t
a

G z G z v t( , ) ( ) ( ) ( )= − − −
π

ρ

4

8
;

dv

dt

a

l
G z G z v t= − − −

2

8γρ
( ) ( ) ( ) ,

where G is the indefinite integral of g z2 ( ) . If g z( ) is constant, G z G z g l( ) ( )− =−
2 .

dv

dt

a g
v t= −

2 2

8γρ
( ) ;
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v

a g
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t
= − ≡ −

2 2

08γρ
; ln ( ) /v t t= − 0 ; v t v e t t( ) /= −

0
0 ,

where t a g0
2 28= γρ . The velocity decays exponentially with time.

For the more general case of a field gradient that depends on axial position, solve

for the velocity as a function of position—the leading edge of the rod—rather than time.
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For the case of constant gradient, this velocity reduction ∆v z v v z( ) ( )≡ −0 is

∆v z a g z( ) /= 2 2 8γρ = a g B2 8∆ / γρ .

How big is this deceleration, in a typical target solenoid? Suppose that the rod is of

gallium, with density and electrical resistivity appropriate to the liquid at its melting

point of 30°C: γ =6.1x103 kg/m3 [1] and ρ =26 µΩ−m [2,3]. Suppose that the rod

climbs a 0.5 m long ramp with a slope of 40 T/m. For these values the reduction in ve-

locity is 6.3 m/s for a rod of radius a =10-2 m. This is the minimum velocity for the rod

to penetrate the field. Of course, were the rod in fact liquid, it might deform, because

the body force density varies so greatly throughout its volume: radially as r 2 and axi-

ally as g z2 ( ) .

A more appropriate field profile is that of a current sheet solenoid. If its radius is a1

and its ends are at zero and +∞ , the field B z( ) is B z a z0 1
2 2 1 2

1+ +( )
/

, where B0 , the



field at the mouth of the solenoid, is exactly half the peak field. The field gradient

g z( ) is B a a z0 1
2

1
2 2 3 2( )+ , with maximum value B a0 1/ at the solenoid mouth, z = 0 .

The indefinite integral ∫≡ dzzgzG )()( 2 is:
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To predict the rod’s cumulative deceleration, ∆v z v v z( ) ( ) ( )≡ −∞ − , evaluate

G z G z( ) ( )− − and integrate with respect to z from −∞ to z :
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A gallium rod as above decelerates 4.6 m/s in going from −∞ to +∞ along the axis of a

semi-infinite solenoid of 0.2 m radius and 20 T peak field. The deceleration scales as

the square of the solenoid field and the rod radius, and inversely as the solenoid radius

and the rod density and electrical resistivity.

To observe the effect of a magnetic field on a liquid jet a particularly convenient

metal is gallium A hot summer day is enough to melt the pure metal, while a eutectic

alloy with 25% indium melts at 16 °C [4]. A ternary alloy with 22% indium and 16%

tin, melts at 11 °C [4]. Its viscosity, 1.894 centipoise at 53 °C [5] for example, is only

double that of water. It is relatively nontoxic, and, unlike mercury, its vapor pressure is

very low [6]. Unfortunately, gallium is fairly expensive—99.99% purity gallium is

$930 for 200g from one source [7].

Case (2): Deceleration of Conductor by Transverse Field with Constant Gradient

Case (2) calculates the force on a conductor of length l that moves along its axis

through a magnetic field perpendicular to that axis. Define the y and z axes to be



those of the velocity v and field B , respectively. The velocity depends on time t or,

equivalently, position y ; the latter is the more informative. For simplicity demand that

the field depend only on y , and that it be linear over the full distance of travel:

B y B g y( ) = +0 , where g, the field gradient dB dy/ , is constant. Let the cross section

be rectangular, with transverse dimension 2a l<< in the x direction. The other trans-

verse dimension—parallel to the field—has no influence on the rate of deceleration.

When the center of the of the bar is at y (and its leading and trailing edges at

y l± / 2 , respectively), the longitudinal cross section of the bar encloses a flux

Φ( ) ( )y a l B g y= +2 0 . This flux induces, around the boundary of the bar, a voltage:

V t
d y

dt

d y

dy

dy

dt
a l g v t( )

( ) ( )
( )= − = − = −Φ Φ

2 ; V y a l g v y( ) ( )= −2 .

The voltage induces a current density which at the longitudinal surfaces x a= ± of the

bar is approximately j a y V y l a g v y( , ) ( ) / ( ) /± ≈ ± ≈2 ρ ρm .

Note that the voltage and current density depend not on the magnitude of the field

but only on its gradient. Motion of the bar through the magnetic field produces a Lor-

entz force F e v B= ± × on each proton and electron in the bar, causing some electrons

to migrate to the surface x a= − ; this polarizes the bar (in the x direction, perpendicu-

lar to its velocity and to the magnetic field). For a current to flow along the bar, how-

ever, it must have a gradient of voltage, and hence of magnetic field, along its length.

To predict the current density at any point ( , )x y , with x a< and y l x a< / 2 , cal-

culate the longitudinal current density at the surface of a geometrically similar but

smaller bar, centered at (0,0) and of length and width l u l'= and 2 2a ua'= , where

0 1≤ ≤u . The current density at the longitudinal surface of the small bar should ap-

proximate the longitudinal current density at the same point in the interior of the large

bar: j x g v y xy ( ) ( ) /= m ρ . Note that the current density is proportional to the distance

x from the ( , )y z midplane of the bar. Since the longitudinal current density is anti-

symmetric in x , and interacts with a magnetic field that is independent of x , the side-

wise force dF j Bx y= × integrates to zero.



The assumption that current flows in rectangular paths of similar shape implies that

the current that flows longitudinally at x u a= ± flows transversely at y l= ± '/2

= ± = ±u l l x a/ /2 2 . The transverse current flows a distance 2x . The positive trans-

verse current at +l x a/ 2 and the equal but opposite current at −l x a/ 2 interact with

fields that differ by g l x a/ . The transverse force per increment of x therefore is:

dF dx x j x B x x g v y x g l x a l g v y x ay y/ ( ) ( ) ( ) / / ( ) /= = − = −2 2 2 2 3∆ ρ ρ .

Integrating with from 0 to a gives the total retarding force, Fy = −a l g v y3 2 2( ) / ρ .

This force, divided by the mass of the bar, m al= 2 γ , is the acceleration dv dt/ . More

enlightening is the equation from section (1) that relates the force to dv dy/ :

1
v

F

m

dv
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= ;
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dy

a l g

a l

a g= − = −
3 2 2 22
2 4

/ ρ
γ γρ

; ∆v v v
a g

y≡ − =0

2 2

4γρ
.

As with paraxial motion, the deceleration rate scales with the square of the bar thickness

and the field gradient, and inversely with its density and electrical resistivity.

Upon negotiating a transverse field that ramps by 20 T over a distance of 0.5 m (40

T/m gradient), a gallium bar 0.02 m thick would decelerate about 12.6 m/s. To avoid so

much deceleration, use either several smaller jets in parallel, or else a metal or alloy of

higher density or higher electrical resistivity. Candidates elements, sequenced by melt-

ing point, are mercury (at. no. 80), at 13.6 g/cm3 and 96 µΩ cm at 20 °C [2,8]; indium

(at. no. 49), at 7.3 g/cm3 and 33 µΩ cm at 156 K [2,9]; tin (at. no. 50), at 7.3 g/cm3 and

48 µΩ cm at 232 °C [2,9]; bismuth (at. no. 83), at 9.8 g/cm3 and 130.2 µΩ cm at 271 °C

[2]; thallium (at. no. 81), at 11.8 g/cm3 and 73 µΩ cm at 303 K [2,8]; and lead (at. no.

82), at 11.4 g/cm3 and 95 µΩ cm at 327 °C [2]. Such jets should penetrate adequately

into an intense magnetic field, avoiding the likelihood that a non-conducting compound

will decompose from the energy deposition from the intense proton beam. Unfortu-

nately, mercury and thallium are highly toxic. Bismuth, under proton bombardment,

transmutes to polonium, whose bad reputation rivals that of plutonium. Bismuth con-

tent may render unsuitable many alloys, such as Indalloy #15, otherwise attractive for

its high density of 9.3 g/cm3 and low melting point of 38-43 °C [4].



Case (3): Deceleration and Rotation of Conductor Moving at Small Angle to Field

The previous two sections prepare the way for a more general geometry in which a

square bar aligned with the z axis moves along that axis at a modest angle with respect

to a field of constant gradient g dB dzz≡ / . The bar is of length l and thickness 2a in

both transverse dimensions. The longitudinal field is B B g zz z= +0 ; ∇⋅ =
v
B 0 , with

Bx ≡ 0 everywhere, constrains the transverse component to be B B g yy y= −0 .

Approximate the induced current flow by a set of square loops that girdle the bar

transversely throughout its length and at all “radii” | |y a< . Each loop encloses a flux

Φ( ) ( )z y B g zz= +4 2
0 . This flux induces around the loop a voltage:

V t
d z

dt

d z

dz

dz

dt
y g v t( )

( ) ( )
( )= − = − = −Φ Φ

4 2 ; V z y g v z( ) ( )= −4 2 .

The voltage induces a transverse current density at y of approximately −V z y( ) / 8 ρ

≈ y g v z( ) / 2ρ . For the typical pion capture system of cases (1) and (2), with g = 40

T/m, v = 20 m/s and ρ = 0.26 µΩ m, the current density at the surface ( y a= = 10 mm)

is 15 A/mm2.

This transverse current interacts with the z component of field to pinch the bar in

the x and y directions. The body force density σ y is j Bx z = y g v z Bz( ) / 2ρ . Integra-

tion with respect to y from 0 to a gives the hydrostatic pressure at the center of the bar

as g v z B az( ) /2 4ρ . For the pion capture system above, and with Bz = 20 T, this pres-

sure is ~1.5 MPa, or ~220 psi—about half a dozen times that from a water tap.

The current density jx in one pair of sides of each loop also interacts with the y

component of field to decelerate the bar and align it with the field. The deceleration

force density on the sides is f j B y B yz x y y= − − −[ ( ) ( )] = − −[ ( ) / ][ ]yg v z yg2 2ρ

= y g v z2 2 ( ) / ρ . The force on a symmetric pair of current sheets of width | |2y and

length l is 2 3 2l y g v z( ) / ρ . Integrating with respect to y from 0 to a gives the total

force as l a g v z4 2 2( ) / ρ .



Since the mass m of the bar is 4 2γ l a , the decelerating force per unit mass is

a g v z2 2 8( ) / γ ρ . Integrating as in section (2) gives ∆v z v v z a g z( ) ( ) /≡ − =0
2 2 8γ ρ .

This deceleration is half that of case (2), because the current flows in square loops with

a ratio of area to perimeter, and hence of current density, that is only half that of the

highly-elongated rectangles of case (2). For the pion capture system parameters as

above, the deceleration is ~6.3 m/s. Note that this is the same as for the paraxial case.

The result should be reasonably accurate even though the bar rotates and loses its

alignment with its axis, so long as the misalignment never approaches 45º (i.e., the field

in the direction of the velocity of the bar always is bigger than the field perpendicular to

the velocity).

Again, the deceleration is inversely proportional to the density and electrical resis-

tivity, and directly proportional to the square of the transverse dimension and the gradi-

ent of the field traversed. For an experiment to reveal the magnetic interaction, one

wants low density and electrical resistivity. Candidate elements are sodium, at 0.97

g/cm3 and 4.9 µΩ cm at 27 °C [10], potassium, at 0.86 g/cm3 and 7.5 µΩ cm at 27 °C

[10], or lithium, at 0.53 g/cm3 and 13.4 µΩ cm at 127 °C [10] and 25 µΩ cm just above

its melting point of 180 °C [8]. One also wants large diameter and field gradient. Un-

fortunately, too low a velocity may allow gravity to dominate the motion. Similarly,

too large a diameter may allow turbulence to dominate. Fortunately, the field gradient

can be high without the field itself being high, if the gradient is sufficiently localized.

The current density also tends to align the bar with the magnetic field. The torque

density, measured about the y = 0 midplane of the bar, is −y j B yx y ( )

= − −[ ][ ( ) / ][ ]y y g v z B g yy2 0ρ . The total torque on a current sheet of width | |2y and

length l is − −l y y g v z B g yy| | ( )[ ] /2
0 ρ . Integrating with respect to y from −a to a

gives the total torque as τ ρx yz l a g B v z( ) ( ) /= − 4
0 2 . The moment of inertia about the

x axis of the bar is I m l ax = +( ) /2 24 12 ≈ ml2 12/ ≈ γ l a3 2 3/ . Therefore the angular

acceleration of the bar is && /θ τ= x xI ≈ −3 22
0

2a g B v z ly ( ) / γ ρ , where θ is the angle be-

tween the bar and the total field.



B y0 , the transverse component of field, is Bz tanθ ; if θ is modest, then B By z0 ≈ θ .

The equation for angular acceleration then becomes that of simple harmonic motion,

&&θ ω θ= − 2 , where ω γ ρ≈ ( / ) /a l g B vz3 20 . For the above pion capture system, with l

= 25 cm, this angular frequency is ~160 radians per second; the bar aligns with the field

in π ω/ 2 ≈ 10 ms. If the bar retained its velocity of 20 m/s throughout this time, it will

have moved about 0.2 m. A jet of 1 cm instead of 2 cm diameter should align in about

20 ms, in a distance of about 0.4 m. The tendency of the jet to align in a distance com-

parable to its length may be very useful: one need not inject the jet along the axis of the

proton beam; one can use the magnetic field to make the jet collinear with the beam.
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