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Introduction

Deterioration of critical properties of crystalline
materials under irradiation is usually analyzed as a
function of displacements per atom (DPA). The
latter is a strong function of projectile type,
energy and charge as well as material properties
including its temperature.

These dependencies - amplified by increased
helium gas production for high-energy beams -
are responsible for "surprises/unknowns” learned
recently at accelerators.
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Nick Simos' Rad.Damage Studies at BLIP with
100-200 MeV protons

2-D carbon Graphite

3-D carbon

Glidcop in both axial and transverse directions
sees 40% reduction at ~1 dpa.

3-D CC (~ 0.2 dpa) conductivity reduces by 3.2.
2-D CC (~0.2 dpa) measured under irradiated
conditions (to be compared with company data).
Graphite (~0.2 dpa) conductivity reduces by 6.
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DPA for Proton/Ion Beams

Observation:
In proton irradiation, a threshold exists on carbon composites and
graphite at ~0.2 DPA, lower than expected from reactor data

(although there were indications of such a level for CTE in reactor
data).

Possible explanations:

« Contribution of Coulomb elastic scattering ~Zp2, becomes important
(dominant in some instances) for charged particle irradiation.

* DPA in BLIP tests was estimated with earlier versions of MCNPX
known to underestimate (neglect) contribution of this process.

* Helium gas production adds, becoming increasingly important at high
energies.

e Graphite is indeed less radiation-resistant than expected.
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DPA

Shocking Disagreement in Model Predictions for
High-Z projectiles (2009)

130 MeV/u "°Ge on W

105 N=9.44775e16 October 6, 2009 PenC” beam’
2 uniform in R=0.03568 cm disc.

o — ;EIII\T/IS 2009 I ] Target W, , cylinder with

e MARS15 R=0.03568 cm, L=0.12 cm.
10° TRIM and PHITS by

Yosuke Iwamoto.

10°
10'
10°
0 o ooz oos oo ose oo os2 0.32-6eV/u 28U on 1-mm Be,

Depth (cm) 9 sz beam

DPA/pot 2.97e-20 5.02e-22 2.13e-20
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DPA/NIEL vs Particle Type & Energy in Si
Fig. 1. Non-Tonizing Energy Loss versus Incident Energy
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DPA Model in MARS15 in One Slide

Norgett, Robinson, Torrens (NRT) model for atomic displacements per
target atom (DPA) caused by primary knock-on atoms (PKA), created in
elastic particle-nucleus collisions, with sequent cascades of atomic
displacements (via modified Kinchin-Pease damage function), displacement
energy T4 (irregular function of atomic number) and displacement
efficiency K(T).
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Rutherford x-section with Mott corrections and nuclear
form factors for projectile and target.

—
]
»

L electron

T SR HTT] MR WEUTT] R S WUTTT] R AT S|
0® 1?7 w' 1 1 10 10’
Energy in GeV

HPTW11, Malmo, May 2-6, 2011 Rad. Damage: Accelerator Surprises - N.V. Mokhov




¢ Energy Loss (MeV cmzlg)

—_

Nonionizin,

—
=

—

Comparing MARS15 with Most Recent Models

I.Jun, “"Electron Nonionizing Energy Loss for Device Applications”,
TEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 56, NO. 6, DECEMBER 2009

e Jun et al
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* Minimal proton transport cutoff energy in MARS is 1 keV
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Comparing MARS15 with Most Recent Models

M.J. Boschini et al., "Nuclear and Non-Ionizing Energy-Loss for Coulomb Scattered Particles from Low Energy up
to Relativistic Regime in Space Radiation Environment”, arXiv:1011.4822v6 [physics.space-ph] 10 Jan 2011
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MJB et al. do not include form factors of target and projectile (default in MARS15),

which are substantial for high Z
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DPA

DPA Comparison: 130 MeV/u 7°Ge on W
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DPA Calculation Comparisons (1)

0.32-6GeV/u 238U on 1-mm Be, 9 cm? beam

* Courtesy Susana Reyes (2009)

DPA/pot 2.97e-20 5.02e-22 2.13e-20

6.50e-20, new PHITS by Yosuke Iwamoto (2011)

MARS15: Physics process ()

99.06 0.02
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DPA Calculation Comparisons (2)

1-GeV p on 3-mm Fe, 1 cm? beam

* Courtesy Susana Reyes (2009)

DPA/pot 1.18e-22 2.96e-21 3.35e-21 8.73e-21

7.79e-21, new PHITS by Yosuke Iwamoto (2011)

MARS15: Physics process ()

75.5 2.75 0.25
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DPA at Cryo Temperatures: Mu2e

Mu2E at Fermilab

Straw Tracker

Muon Stopping
Target

Muon Beam

Superconducting
Transport Solenoid Stop
(25T:217)
Crystal
Calorimeter

Superconducting
Superconducting Detector Solenoid
Production Solenoid (20T:1.0T)

(50T:25T) Collimators

Aim for 10-16
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RRR Degradation: DPA limit for SC coils = 2.5E-5 /yr

8-GeV p, 25 kW
2.el3 p/s

Oy = 0, = Imm
Gold water-cooled
target (r=3mm,

' Coil materials:
. 8.35% NbTi
8.35% Cu

Bottleneck: degradation of Residual Resistivity Ratio (RRR) of  17.33% 610
stabilizer (ratio of electric resistivity of a conductor at room Bl

temperature to that at the liquid He one).
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MARS15: DPA, yr”-1

DPA, vr©~-—1
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RRR vs DPA

Journal of Nuclear Materials 133&134 (1985) 357-360 T. Ogitsu p) S (C OME T, Jap an) :

DEFECT PRODUCTION AND RECOVERY IN FCC METALS IRRADIATED AT 42K *

M.W. GUINAN, J.H. KINNEY and R.A. Van KONYNENBURG i s p g sgreogtlaruhySie
Lawrence Livermore National Laboratory, Livermore, Caltfornia, USA ]-X]-O L\E ) 500
ISOCHRONAL RECOVERY OF FAST NEUTRON IRRADIATED METALS* \ )
J.A. HORAK** and T.H. BLEWITT 1x10” 400
Argonne National Laboratory, Argonne, [llinois, 60439, USA
Received 22 May 1973 /
vis ived 2 3 d
Revised manuscript received 27 August 1973 5 1x10 8 D/ 500
% —&— Al RRR(500) E
) The values used for the xcslstwny per Frenkel p.u' are: 2 4 q —<— CuRRR(200)
— — ~ — — 1x10° 200
Resistivity per Frenkel pair, og p. —©— Al DeltaRho
Element — — —6— Cu DeltaRho
(N2 0 cmfatom fraction) Ref. 10 / T
———— e e 1x10° 7 : 100
Aluminum 6.8 (4] d : :
Nickel 6.4 (4] q
Copper 2.5 (4] %
Silver 2.5 (4) 1x10° : ’ ; 0
Gold 2.5 (4] 10° 10° 10° 0.0001 0.001 0.01
Platinum 7.5 [5)
Iron 12,5 (6) DPA
Molybdenum 10.0 estimated Ay . .
Cobalt 10.0 estimated - Resistivity will degrade by Frenkel Pairs
' g induced by neutron
[4] P.G. Lucasson and R.M. Walker, Phys. Rev. 127 (1962) - Number of Frenkel Pairs = DPA
1130,

DPA: 2E-5 per 1E21 protons
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Consequences of Higher DPA

1. Higher electrical resistivity at 4.5K/lower RRR:
* Higher peak temperature during quench
« Higher resistive voltage across the coil during quench
 Reduced stability against heat pulses

2. Lower thermal conductivity at 4.5K:
* Increased temperature increment across the coil
 Reduced thermal margin
* Reduced stability against heat pulses

RRR change by a factor of 2 leads to the temperature
change by ~50 mK
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h NuMI 2" target depletion ( ZXF-5Q amorphous graphite )
# NT-02 replaced when spectrum shift became too large.

Gradual decrease in neutrino rate attributed to target radiation damage

Decrease as expected when decay pipe changed from vacuum to helium fill

No change when horn 1 was replaced
No change when horn 2 was replaced
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Neutrino Yield and Target Degradation

Observation:

Neutrino yield has degraded by up to 10% after exposure of the
target with 6e20 protons.

Explanation: Radiation damage of the target material in the shower
maximum region (z ~ 10-15 cm, r < 1-2 mm).

Possible mechanisms:
1. Void creation due to DPA (a simple model tried by two groups).

2. Helium bubble production, quite substantial at 120 GeV. Trapped
bubbles and helium pressure would reduce target density in the
above region.

3. Graphite amorphization: p = 1.8 gcc = porous carbon p ~ 1.5 gcc
(according to M. Tomut).

4. Transmutation of carbon nuclei.
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DPA and Helium Distributions

Maximum of DPA distribution
produced by 120 GeV/c proton

beam with o,= 0,=1.1 mm during
Run IT (2 1020 POT )is 0.25 DPA

After Run III (4 1020 POT)

maximum of DPA distribution
reaches 0.75 DPA

Distribution of produced helium
atoms is very similar to DPA
distribution

After Run IT (2 102° POT)

maximum of helium concentration
is 1.6 10° atom/cm3

After Run ITI (4 1020 POT)
concentration run up to 4.8 10

3
aTom&m Malmo, May 2-6, 2011

DPA/DPA,. as function of r and z
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DPA, Helium and Energy Deposition Distributions

Similar in this particular case (high energy, low-Z, small r), not in general
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Modeling Neutrino Spectra

A simplified model of the
channel: target, 2 horns, decay
pipe, absorber

This model does not take into
account production of secondary
particles in interactions with
horns, walls of decay tube and
scattering in horns. It describes
well measurements of neutrino
spectra and reasonably - without
including the detector response
- rate of CC events.
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DPA-Driven Void in the Target

Run III > 0.23 DPA

A void model of target Run IL>0.23 DPA
destruction: graphite is

replaced by hole in the region
where DPA level exceeds the
‘g'gr:shold, taken here as 0.23

DPA,...=0.25 after Run IT:
0.95-grey hole

DPA, ..=0.75 after Run III:
0.35-green hole
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Void Model: a Limited Success
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Density Reduction due to Helium or Amorphization

*Target density in each point is proportional to
radiation-induced porosity (~DPA) and inversely
proportional to the helium concentration in that
point.

*Target mass is not change.

*There is only one unknown parameter in this
model. There are two sets of data from NuMI,
therefore the model can be checked against
measurements.
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Time variation in Run-ITI

Density Reduction Model: Seems Reasonable

Run II, 2 10%° POT Run IIL, 4 102° POT
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Summary

» Radiation damage by high-energy beams is more intense
(for the same fluence) due to Coulomb elastic scattering

~Z,?; codes which include this process, nuclear interactions,
and same DPA model parameters agree quite well; radiation
damage at high energies is amplified by intense helium gas
production.

« The bottleneck in design of large superconducting magnet
systems is extremely low level of the allowable DPA (~10-°)
in stabilizing materials (Al and Cu).

e Observed neutrino yield degradation is attributed fo
reduction of graphite density in shower maximum region due
to helium gas production or/and amorphization of graphite.
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