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Abstract

Efficient production and collection of a large number of muons is needed to make a neutrino factory based on a
muon storage ring viable. Results of extensive MARS simulations for 2-30 GeV protons on various targets in a 20 T
hybrid solenoid followed by a matching section and decay channel are reported. Part I describes pion and muon yields,
targetry issues, and beam energy and power considerations. Part II describes radiation loads on targets, the capturing
system and shielding. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

To achieve adequate parameters of a neutrino
factory based on a muon storage ring [1], it is
necessary to produce and collect large numbers of
muons. The system starts with a proton beam
impinging on a thick target kept in a high-field
solenoid (20T, 1I-m long, aperture radius
R, = 7.5cm), followed by a 3-m long matching
section and a solenoidal decay channel (1.25T, 50—
100 m in length, R, = 30 cm) which collects muons
resulting from pion decay [2,3]. Optimization of
beam, target and solenoid parameters were done
over the years with the MARS code [4,5] for a
whu~ collider project [2,3,6-9]. This paper focuses
on parameters needed for a muon storage ring and

*Work supported by the Universities Research Association,
Inc., under contract DE-AC02-76CH00300 with the US
Department of Energy.

E-mail address: mokhov@fnal.gov (N.V. Mokhov).

briefly describes the results of extensive MARS
simulations of 7n/u-yield (Part I) and radiation
fields in the target station and capturing system
(Part II) for 2-30 GeV proton beams. Preliminary
results were given in Refs. [1,9].

2. Captured =/p beam vs. target and beam
parameters

Realistic 3-D geometry together with material
and magnetic field distributions based on the
solenoid magnet design optimization have been
implemented into MARS. Graphite (C) and
mercury (Hg) tilted targets were studied. A two
interaction length target (80cm for C of radius
Ry =7.5mm and 30cm for Hg of Rt = Smm) is
found to be optimal in most cases, keeping
Rr>2.50.,, where o., are the beam RMS spot
sizes. The calculation model (Fig. 1), keeping the
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main features of the baseline design [8,9], has been
significantly refined in the course of the study [1].
A deviation of B, and B, (Fig. 1 (right)) from the
ideal field [8,9], results in the reduction of the 7/u-
yield in the decay channel by about 7% for C and
by 10-14% for Hg targets.

Results of a detailed optimization of the particle
yield Y are presented below, in most cases for a
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sum of the numbers of © and p of a given sign and
energy interval at a fixed distance z = 9 m from the
target. It turns out, that for proton energies E,
from a few GeV to about 30 GeV, the shape of the
low energy spectrum of such a sum is energy-
independent and peaks around FE = 130MeV,
where E is n/u kinetic energy (Fig. 2). Moreover,
the sum is practically independent of z at z>
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Fig. 1. MARS model of the target/solenoid system (left) and B. field profile (right).
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Fig. 2. Energy spectra of n* + u* for 4-24 GeV protons (left) and numbers of particles in the (Emin—0.8 GeV) interval vs.

Emin for

16 GeV protons (right) at z = 9m for a 80-cm C target (Rt = 7.5mm, o = 50 mrad).
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9 m—confirming a good matching and capturing
—with a growing number of muons and propor-
tionally decreasing number of pions along the
decay channel. For the given parameters, the
interval of 30 MeV<E<230MeV around the
spectrum maximum is considered as the one to
be captured by a phase rotation system.

The yield Y grows with the proton energy E,, is
almost material-independent at low energies and
grows with target A at high energies, being almost
a factor of two higher for Hg than for C at
Ep,=16—30GeV (Fig. 3). To avoid absorption of
spiraling pions by target material, the target and
beam are tilted by an angle o with respect to the
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solenoid axis. The yield is higher by 10-30% for
the tilted target. For a short Hg target,
o = 150 mrad seems to be the optimum (Fig. 3),
while & = 50 mrad is chosen in Ref. [1] for a long C
target to locate a primary beam dump at 6 m from
the target. Fig. 4 shows the dependence of the yield
on Hg and C target radii under the baseline Rt =
2.50y, condition. Figs.4 and 5 show that
maximum yield occurs at target radius
Rt =7.5mm for C and Rt = 5mm for Hg tar
gets with Rt =3.50,, and 40., conditions
for the beam spot size, respectively. The baseline
criterion Rt = 2.50,, reduces the yield by
about 10% for the graphite target, but is more
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Fig. 3. Yield from Hg and C targets vs. E, (left) and yield from a Hg target at £, = 16 GeV vs. tilt angle (right).
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Fig. 4. Yield as a function of a target radius, Hg (left) and C (right), for a 16-GeV proton beam and several tilt angles.
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Fig. 5. Yield (left) and maximum instantaneous temperature rise (right) as a function of a target to a RMS beam spot size ratio (right).
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Fig. 6. Y and Y /E,; (left) and N, and beam power (right) for C target.

optimal from the energy deposition point of view
(Fig. 5).

The ratio of Hg to C yields varies with the beam
energy, as well as with other beam/target para-
meters. At 16 GeV it is in the range 1.5-1.7 for
positives and 1.7-2.2 for negatives. Optimizing
beam/target parameters, it is found that the best
results for the particle yield in the decay channel
at 16 GeV with the given cut are: Y+ ,+ = 0.182
and Y., = 0.153 for the 80-cm C target and
Yeigur = 0309 and  Yiri o = 0315 for the
30-cm Hg target, ie., at 16GeV (best Hg)/
(best C)=1.7 (+) and 2.06 (—).

3. Beam power considerations

The yield per beam power is almost independent
of E, for high-Z targets at 6<E,<24GeV and
drops by 30% at 16 GeV from a 6-GeV peak for
graphite (Fig. 6 (left)). The higher E, reduces the
number of protons on the target, but results in
more severe energy deposition in the target. To
provide N,= 2 x 10 muon decays per year in the
straight section at 15Hz, one needs to have
6 x 10">muons per pulse in the decay channel
assuming a factor of three total loss on the way
from the decay channel to the ring. With that,
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Fig. 7. Power dissipation in C target (left) and peak energy deposition and temperature rise in C target (right), providing
N,=2x 10% muon decays per year. A dashed line shows a peak energy deposition density per proton on target.

3.30 x 10" and 3.92 x 10" protons per pulse at
16 GeV on the optimal C target are needed for
positives and negatives, respectively. This corre-
sponds to 1.27 and 1.51 MW beams. For a Hg
target, these numbers are 1.7 and 2.06 times lower.
Fig. 6 (right) shows the required number of
protons N, and beam power as a function of E,
for the C target, while Fig.7 presents power
dissipation and peak heating in the C target to
provide N,=2 x 10* muon decays per year. At
16 GeV, the peak instantaneous temperature rise is
60-70°C and power dissipation is 34.3 and
40.7kW for the u™ and u~ modes, respectively.
For Hg targets, the required beam power is lower,
in the range 0.73-0.75 MW, however, the peak
temperature rise per pulse is 750°C, because of
higher energy deposition density.

4. Conclusions

The number of muons required for a neutrino
factory can be provided in the decay channel for
further capturing by a phase rotation system with
graphite and mercury targets impinged by intense
15-Hz proton beams in the energy range 2-
30 GeV. Depending on proton energy, the required
beam power is 1-2 MW with a graphite target, and
0.7-1MW with a mercury target. The results
obtained in the course of thorough MARS

simulations provide a basis for further optimiza-
tion of the target/capture system.
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