

Report of the International Working Group on Muon Beamlines

Bruno Autin, Roberto Cappi, Rob Edgecock, Kirk McDonald, Glen Marshall and Yoshi Mori

- Introduction
- Beam requirements the cooling experiment
- Single particle muon beams
- High intensity proton beams ~ the "blast" test
- Comparison
- Conclusions

Charge to the IWG

- (1) Survey existing muon beams
- (2) Determine the requirements for muon beams
- (3) Check if existing beams satisfy these
- (4) If not, find plans for new beams
- (5) Submit a report by NuFACT'01
- There has been a lot of progress on (2) \Rightarrow Cooling experiment

Thus, (1), (3) and (4) have been combined and will be compared against (2).

- 10% reduction in (large) 6-d emittance using prototype components
- Aims: Measure the (small) equilibrium transverse emittance
 - Measure evolution of angular momentum

Requirements for the beam

- Muons with a range of parameters for emittance studies:
 - Emittance: 1π mm.rad to 50π mm.rad
 - Momentum: 200 to 450 MeV/c
 - Momentum spread: "zero" to 20%
- Beam diagnostics of x, P_x, y, P_y, z or t, P_z

 \Rightarrow Single particle muon beam

- To measure a 10% change, need ~ 1% precision \Rightarrow ~ 10k muons
- Test cooling components under high radiation

 \Rightarrow Blast test with protons

• Some advantage to doing single particle and blast test in the same place

Infrastructure Requirements

Experiment is:

- ~ 30 m long by 3 m across
- Pulsed at 50 Hz with 100µs per pulse

Pulsed rf \Rightarrow Beam should be pulsed

• Ex: Pulsed at 50 Hz with 100µs per pulse

Power amplifiers for rf require:

- 1-2 MW of power
- 50-100 m³/hr of cooling water
- ~ 28 by 19 m² of space

D2 at BNL

• Beam exists, but rarely used

- Designed for 300 MeV/c pions
- Currently limited to 184 MeV/c muons by final dipole
- Space limited < 5 m (unless D4 line removed)
- Either slow spill, or 12 fast bunches
- $\mu/p \sim 10^{-6}$

TT1 at CERN (for LHC beam)

- 72 bunches, each 1 ns long, separated by 25 ns; each bunch makes 5-10 turns
- Assume 1 μ / turn (on average) \Rightarrow 720 μ / 25 μ s, every 14.4 s
- Pion/muon production using a target in TT1 line; experiment also in TT1 ⇒ transverse space limited
- Blast test possible
- Limited space for rf
- Doesn't exist:

Cost: 4MCHF

East Hall at CERN

- For East Hall, use slow extraction: 4 bunches, making >10000 turns
- 1 $\mu/$ bunch / turn \Rightarrow >40000/14.4s, separated by 450ns
- Plenty of space (in principle), including for rf power

High intensity blast test may also be possible, e.g. DIRAC

> Cost: Unknown

Linac Test Facility at FNAL

- At the end of the FNAL linac
- Produces 400 MeV H⁻ ions
- 15kW beam power
- Pulses 50µs long with bunches 0.2ns long
- 1.6x10⁹ particles/bunch
- Designed for "blast" test of cooling components

• Construction expected to start spring 2002

- CW operation, 600 MeV
- Pulse length < 1ns
- Time between pulses ~ 20ns
- Beam currently limited to 195 MeV/c
- \bullet Modifications required for 300 MeV/c and more for > 300 MeV/c
- $\mu/s (300 \text{ MeV/c}) > 10^6$
- Space available for experiment
- Blast test impossible

Cost: Unknown

- ISIS: 50Hz, >100µs at maximum energy, 800 MeV
 - \Rightarrow CW for experiment
- Two bunches, 100ns long
- Separated by 230ns
- Simulations suggest 1µ/pass; currently being measured $\Rightarrow 20000 \text{ µ/s}$
- Space for experiment exists Cost: small
- Blast test also possible: Cost: possibly large!

Kirk McDonald Monday, 28th May 2001

TRIUMF

- CW: 1.9ns beam pulse, every 43 ns
- M11 has momentum range 100-420 MeV/c, but limited space
- M20 can have 12 m of space, but only 20-180 MeV/c
- Not clear if it is possible to increase this
- Intensity: 10⁶ µ/s
- Space could be made available for rf power supplies
- Blast test not possible

Comparison between beams

Single particle muon beams:

Beam	Momentum	ΔΡ	Muon Intensity	Area	Exists
	(MeV/c)	$\Delta(\%)$	(during 1 s)	(m ²)	
BNL D2	100 - 250	10	50,000 / 5 ms	5 x 3	Yes
CERN – TT1	200 - 450	?	720 / 0.1 ms	> 30 x 4	No
CERN – East Hall	200 - 450	?	1,000 / 0.5 ms	30 x 5	No
$PSI - \mu E1$	85 - 310	1 (?)	> 50,000 / 5 ms	30 x 5	Yes
RAL - ISIS	100 - 500	~ 2	20,000 / 5 ms	30 x 5	Yes
TRIUMF – M20	20 - 180	5	5,000 / 5 ms	12 x 4	Yes

Comparison between beams

Blast test beams:

Beam	Type	Energy	Beam Power	P/bunch	Bunch length	Beam width
		(GeV)	(kW)	x10 ¹¹	(ns)	(mm)
CERN -TT1	р	26	83.2*	50	14	1.8
FNAL – linac	H	0.402	15.7*	0.016	0.2	9
RAL - ISIS	p	0.8	32	100	7	15

*Total beam power: fraction available for tests is unclear

Summary

Six candidate beams satisfy some/all single particle requirements:

- (1) BNL D2
- (2) CERN TT1
- (3) CERN East Hall
- (4) PSI µE1
- (5) RAL ISIS
- (6) TRIUMF M20

- Area needs extending, cost ?
- Not yet built, cost > 4 MCHF
- Not yet built, cost ?
- Area needs extending, cost ?
- Rates low, cost small
 - Space limited, energy low

There are three candidates for the blast test:

- (1) CERN TT1(2) FNAL linac(3) RAL ISIS
- As above
- Construction in 2002, cost ?
- Extraction line required, cost large!

Only two labs can do both!

Conclusions

- There are candidate beams that satisfy the cooling requirements
- All require at least some work!
- The requirements have to be more clearly defined
- Once this is done, the work to be done can be costed
- The best beam(s) can then be selected

Instrumentation

Position, angle and momentum from four detectors in solenoids:

Detectors

For solenoids: scintillating fibres

- Three planes of fibres
- Diameter 0.5 to 1.0mm
- Resolution:

	Actual	Required
Position	150-290µm	5mm
Angle	<1mrad	5mrad
Time	~500ps	200ps

 Time resolution may not be good enough ⇒ tof detectors required resolution ~ 70-200ps

Emittance Resolution

Emittance Resolution

Decays:

- µ→e: 0.2% contamination of e ⇒ 5 times worse Resolution and Bias ⇒ electron-id required
- Pion decays: similar problems
 ⇒ must be rejected (e.g by TOF)

- Recent simulations use solenoid field maps and E-fields for the cavities
- Looking for a loss-less channel with B < 4T
- "Matching" is crucial
- Simulated E_{kin} = 200 MeV muons

Cavity Design

- Asymmetric 88MHz cavity design by Frank Gerigk
- 90cm long with 3.6MeV energy gain per structure
- 16 cavities \Rightarrow 160cm of liquid hydrogen

- Cavity design leaves 45 x 20cm of space. Can use 40 x 17cm
- First rudimentary design done
- Should not exceed B = 4T

Performance

- Simulations show:
 - full transmission
 - emittance decrease from 651cmmrad to 578cmmrad \Rightarrow 10% reduction required
- Still to be done:
 - new geometry
 - better field maps
 - beam with an energy spread
 - higher energy
 - etc.....

Cost and Schedule

Cost:

Schedule:	• TDR	Summer 2001?	
	 Approval 	2002?	

- Construction done 2004?
- Experiment complete 2005

Conclusions

- It is essential to demonstrate a cooling channel can be built
- A cooling experiment is being developed that will do this
- This has three components:
 - Single particle muon beam
 - Instrumentation

- \rightarrow three candidates in Europe
- \rightarrow SciFi in solenoids + TOF
- Cooling box \rightarrow Section of 88MHz channel
- Current simulations show a 10% cooling and sufficient precision
- Setup will also allow an investigation of the cooling parameters
- Still much work to be done