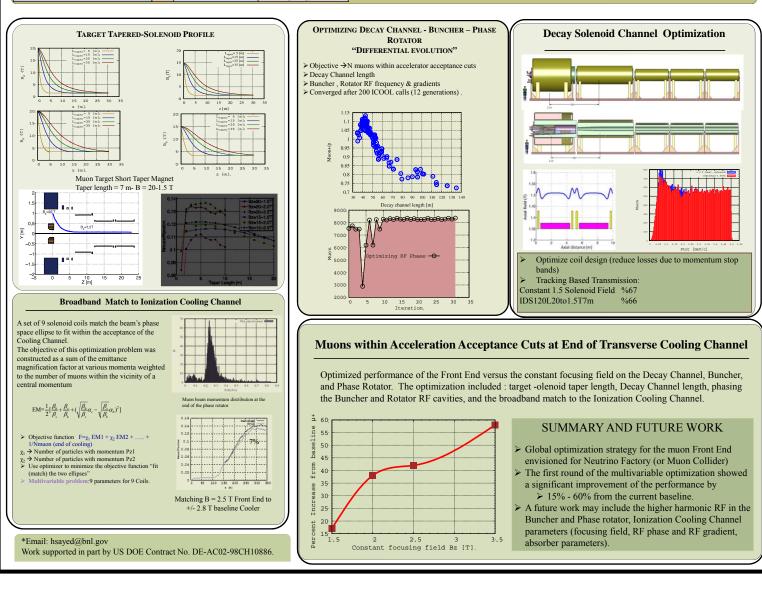

TOWARDS A GLOBAL OPTIMIZATION OF THE MUON ACCELERATOR FRONT END

H. K. Sayed,^{*1} J.S. Berg,¹ H.G Kirk,¹ D. Stratakis,¹ K.T. McDonald,² D. Neuffer,³ R. Ryne,⁴ J. Qiang⁴

TUPBA11 NAPAC'13 ¹ Brookhaven National Laboratory, Upton, NY ² Princeton University, Princeton, NJ ³Fermilab, Batavia, IL ⁴LBNL, Berkeley, CA


CONCEPT

The baseline design for the Neutrino Factory/Muon Collider Front End consists of a five major components, namely the Target System, Decay Channel, Buncher, Phase Rotator, and the Ionization Cooling Channel. Although each of the mentioned systems has a complex design which is optimized for the best performance with its own set of local objectives, the integration of all of them into one system requires a global optimization to insure the effectiveness of the local objectives and overall performance. This global optimization represents a highly constrained multi-objective optimization problem. The figures of merit are the number of muons captured into a stable bunches and their transverse and longitudinal emittances. These objectives are constrained by the momentum and dynamic acceptance of the subsequent acceleration systems, in addition to the overall cost. A multi-objective global evolutionary algorithm is employed to address such a challenge. In this study a statement of optimization strategy is discussed along with preliminary results of the optimization.

Parameters to be optimized:

- > Target: capture solenoid field, and subsequent "taper"
- > Decay Channel: length, constant solenoid field
- Buncher & Phase Rotator: RF phase, frequency, gradient
- Transverse match into Cooler
- Cooling Channel: RF phase, frequency, gradient, and solenoid focusing

