Science & Technology
~— Facilities Council

Review of High Power Proton Target Challenges

Heat Removal and Thermal ‘Shock’

Presented by: Tristan Davenne
High Power Targets Group
Chris Densham, Ottone Caretta, Tristan Davenne, Mike Fitton, Peter Loveridge, Dan Wilcox
(Joe O’Dell & Geoff Burton)
Rutherford Appleton Laboratory

Acknowledge: Patrick Hurh, Jim Hylen, Kris Anderson, Bob Zwaska, Nikolai Mokhov,
Ron Ray, Richard Coleman

Proton Accelerators for Science and Innovation Workshop
at Fermilab
13" January 2012




Summary

The following target challenges will be addressed:

1)Heat removal (High Heat Flux Cooling)

2) Thermal "shock" (including cavitation in liquid cooling media)
5) Spatial Constraints (and magnetic field effects)

7) Physics optimization

Reference will be made to the following range of target examples each of which HPTG
has some involvement:

* Muze Muon Source

e T2K )

* L|BNE

* Numi-Nova — Neutrino facilities
* Euronu

 Neutrino factory - —
« |SIS

 ESS Neutron Spallation
* ADSR



Heat Removaland T

nermal ‘Shock’ Table

Target Power Deposited Peak Temperature Existing or proposed
[kW] JumplK] solution
Mu2e 2 0.0014
Peripherally cooled
T2K 15 100 cylinder
Numi 4 364
Peripherally cooled
Nova 8 253 segmented
LBNE 23 75+
ISIS 100 3.8 Segmented with
EuroNU 500 62 cooling through core
Neutrino Factory 500 10007 Flowing or rotating
target
ESS 3000 100 Rotating target with
cooling through core
of target
ADSR 70007 57 Liquid metal?




Heat removal from Peripherally cooled cylinder
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Heat Removal from segmented targets
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ADTR™

Heat removal from
flowing /rotating target

The minimum beam
power for ADSR

to be economically
attractive is thought to be
10 MW. Bowman et al.
2011 PAC

Figure 2. The Jacobs” concept for beam delivery to a liquid lead spallation target in
an ADSR. More detailed versions exist but cannot be made public.
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Thermal shock in peripherally cooled solid target

MuZ2e beam structure results in
negligible thermal ‘shock’
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WVon Mises stresses [MPa]

Thermal Shock for a segmented target

Analysis of dynamic stresses: effect of target segmentation
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Segmented Target (Thermal Shock in cool
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Thermal Shock in flowing targets
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(Thermal Shock what is the limit?)

Predicted Peak Energy
Deposition for LBNE 2.3 MW
with 1.5 mm beam sigma radius
was 846 J/cc and thought to
cause stresses too high for Be to
survive

But P-bar Target (FNAL) has a
Beryllium cover that regularly
sees 1000 J/cc and shows no
evidence of damage

ANSYS analysis for similar
conditions suggests peak
equivalent stresses of 300 Mpa
(elastic-plastic, temp-dependent
mat’l properties, but not
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Dynamic stresses could be 30-

P.Hurh et al. 50% higher



Heat Removal and Thermal Shock Summary
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Spatial Constraints

T2K, Numi, LBNE, Euronu all need to fit within a
horn, considerable challenge to fit target,
support structure and cooling channels

Velocity (Contour 2)

[l'l’] 51\_1] o 0.012 0.025 0.037
! S 1

MuZ2e and Neutrino Factory target must
fit within superconducting solenoids.
Space for an individual target not so
hard but for a flowing target or rotating
target is more challenging especially
considering required solenoid shielding

[/
[/
y
Window water-Cooled

M."_.u,.v" Pool / Tungsten-Carbide
Beam Dump Shield

Neutrino factory IDS

\
Resistive
~ Magnets

/
Beam

For Neutron spallation sources such as ISIS and ESS the primary spatial
constraint is that the target fits within the moderators

For ADSR the target must fit within a nuclear reactor core



Temperature jump [K]

Physics optimization
Yield per proton vs. Design
conservatism

Example: Choice of density

Temperature jump
significantly lower in low Z
materials with neutrino
factory beam parameters
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Physics optimization

MuZ2e target support design
Minimizing material around
target to minimize particle
reabsorption

Heutron Yield
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Physics optimization
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Conclusions

Peripherally cooled cylindrical monolith targets have limited heat dissipation
capability as a result of both steady state and dynamic stresses.

Segmented internally cooled stationary targets can accommodate much higher
heat loads and higher power densities.

A pebble bed target is being considered for Euronu and may be relevant for other
facilities where a solid cylindrical target would not be viable. R & D in pebble bed
or other segmented targets is required for future neutrino facilities and also for
ISIS upgrades and optimizing designs such as ESS.

Target designs are often based on a static yield stress limit. However there is some
evidence to suggest the static yield stress can be safely exceeded. The Hi-rad mat
facility offers a good opportunity to test this with some single pulse failure tests.

Single pulse failure testing and beam sweeping are both interesting from the point
of view of determining how far stationary targets can be pushed before a flowing
or rotating target is genuinely required.

Physics performance is a function of reliability as well as optimum particle yield so
try to choose the simplest target design possible.



