Vena Contracta

K.T. McDonald *Princeton U.* February 16, 2005

http://puhep1.princeton.edu/mumu/target/

KIRK T. MCDONALD MUON COLLABORATION MEETING, BERKELEY, FEB. 16, 2005 1

The Best Nozzle is No Nozzle(?)

Reservoir at pressure P with small aperture:

$$
v_{\text{reservoir}} \approx 0, \qquad v_{\text{jet}} \approx \sqrt{\frac{P}{\rho}}.
$$

Jet emerges perpendicular to the ^plane of the aperture.

 $Reservoir + short nozzle$

No reservoir, just a straight tube. $v_{\rm jet} = v_{\rm tube}$:

Most nozzle R&D is concerned with making ^a jet break up quickly and uniformly (atomizing), rather than with preserving the jet. KIRK T. MCDONALD MUON COLLABORATION MEETING, BERKELEY, FEB. 16, 2005 2

Conservation of **Energy** *vs.* $\mathbf{F} = d\mathbf{P}/dt$ **at a Contraction?** (Borda, 1766)

Incompressible fluid $\Rightarrow V_1A_1 = V_2A_2$.

 $A_2 \ll A_1 \Rightarrow V_1 \ll V_2$.

Conservation of Energy \Rightarrow Bernoulli's Law:

$$
P_1 + \frac{1}{2}\rho V_1^2 = P_2 + \frac{1}{2}\rho V_2^2.
$$

$$
V_1 \ll V_2 \Rightarrow V_2^2 \approx 2\frac{P_1 - P_2}{\rho}.
$$

Argument does not depend on the area.

$$
\mathbf{F} = d\mathbf{P}/dt:
$$

Mass flux = $\rho V A$.
Monentum flux = $\rho V^2 A$.
Net momentum flux = $\rho (V_2^2 A_2 - V_1^2 A_1)$
= $\rho V_2 A_2 (V_2 - V_1) \approx \rho V_2^2 A_2$.

Force $\approx (P_1 - P_2)A_2$.

$$
\mathbf{F} = \frac{d\mathbf{P}}{dt} \Rightarrow \qquad V_2^2 \approx \frac{P_1 - P_2}{\rho}.
$$

Consistency \Rightarrow dissipative loss of energy, OR jet pulls away from the wall and contracts.

Vena Contracta

Cavitation can be induced by ^a sharp-edged aperture.

A jet emerging from ^a small aperture in ^a reservoir contracts in area:

$$
A_{\text{jet}} = \frac{\pi}{\pi + 2} A_{\text{aperture}} = 0.62 A_{\text{aperture}}
$$

$$
d_{\text{jet}} = 0.78 d_{\text{aperture}}
$$

2-d potential flow (conservation of energy) \Rightarrow analytic form:

$$
x = \frac{2d}{\pi + 2} (\tanh^{-1} \cos \theta - \cos \theta), \qquad y = d - \frac{2d}{\pi + 2} (1 + \sin \theta),
$$

$$
\theta = \text{angle of streamline}, \qquad -\frac{\pi}{2} < \theta < 0.
$$

 90% of contraction occurs for $x < 0.8d$.

Good agreemen^t between theory and experiment.

