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Abstract

We have developed a numerical algorithm and computational soft-
ware for the study of magnetohydrodynamics (MHD) of free surface
flows at low magnetic Reynolds numbers. The governing system of
equations is a coupled hyperbolic/elliptic system in moving and ge-
ometrically complex domains. The numerical algorithm employs the
method of front tracking for material interfaces, high resolution hy-
perbolic solvers, and the embedded boundary method for the elliptic
problem in complex domains. The numerical algorithm has been imple-
mented as an MHD extension of FronTier, a hydrodynamic code with
free interface support. The code is applicable for numerical simulations
of free surface conductive liquids or flows of weakly ionized plasmas.
Numerical simulations of the Muon Collider/Neutrino Factory target
have been discussed.

1 Introduction

Computational magnetohydrodynamics, greatly inspired over the last decades
by the magnetic confinement fusion and astrophysics problems, has achieved
significant results. However the major research effort has been in the area
of highly ionized plasmas. Numerical methods and computational software
for MHD of weakly conducting materials such as liquid metals or weakly
ionized plasmas have not been developed to such an extent despite the need
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for fusion research and industrial technologies. Liquid metal MHD, driven
by potential applications of flowing liquid metals or electrically conducting
liquid salts as coolant in magnetic confinement fusion reactors as well as
some industrial problems, has attracted broad theoretical, computational,
and experimental studies (see [16, 17, 18] and references therein). Weakly
ionized plasmas have been studied with respect to their application to toka-
mak refueling devices [22, 23], laser ablation in magnetic fields [11], and
other processes in a laboratory and nature.

The existance of free material interfaces in many practically important
MHD porblems create major complications for numerical algorithms. The
majority of numerical studies of free surface MHD flows is based on semi-
analytical treatment of simplified flow regimes. The only fully numerical
treatment of general free surface incompressible liquid flows is implemented
in the HIMAG code [18] using the level set algorithm for fluid interfaces,
electric potential formulation for electromagnetic forces, and incompressible
fluid flow approximation. However, strong linear and nonlinear waves and
other compressible fluid phenomena such as cavitation are typical features
of many practically important free surface MHD regimes in both weakly ion-
ized plasmas and liquid metals interacting with intense sources of external
energies. The ablation of solid hydrogen pellets in tokamaks (a proposed
tokamak fueling technology) [22, 23], laser - plasma interaction, and the
interaction of liquid mercury jet with proton pulses in target devices for fu-
ture advanced accelerators [20] are among numerous examples of such MHD
problems. In this paper, we propose a 2D numerical algorithm and describe
its implementation in a software package capable of studying such a class of
problems. The work on the corresponding 3D version is in progress and will
be reported in a forthcoming paper. The algorithm solves the compressible
equations for fluid flows and the low magnetic Reynolds number approxima-
tion [19] for electromagnetic forces. Mathematically, the governing system
of equations is a coupled hyperbolic - elliptic system in geometrically com-
plex and evolving domains. We use the method of front tracking [8] for the
propagation of fluid interfaces. Our FronTier code is capable of tracking
and resolving of topological changes of large number of interfaces in two
and three dimensional spaces [9]. In the method of front tracking, the in-
terface is a Lagrangian mesh moving through a volume filling rectangular
mesh according to the solution of the corresponding Riemann problem. High
resolution solvers based on second order Godunov methods are used to up-
date hyperbolic states in the interior away from interfaces. The embedded
boundary method [14] is used for solving the elliptic problem in geometri-
cally complex domains bounded by fluid interfaces. The explicit treatment
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of interfaces typical for the method of front tracking is especially advanta-
geous for multiphysics problems involving phase transitions. It allows not
only to solve accurately the Riemann problem for the phase boundary [28],
but also to apply different mathematical approximation in the regions sepa-
rated by interfaces to account for the phase change from the solid to liquid
and vapor phases as required, for instance, in the pellet ablation problems
for the tokamak fueling.

In this paper, we also discuss results of the numerical simulation using
the developed MHD code of the liquid mercury target for the Muon Col-
lider/Neutrino Factory, a future advanced accelerator [20],
http://www.cap.bnl.gov/mumu/info/intro.html. The target has been pro-
posed as a liquid mercury jet interacting with an intense proton pulse in a
20 Tesla magnetic field. The state of the target after the interaction with a
pulse of protons depositing a large amount of energy into mercury (the peak
energy deposition is about 100 J/g) is of major importance to the accelerator
design.

The paper is organized as follows. In Section 2, we introduce the sys-
tem of governing equations and discuss mathematical approximations. The
numerical algorithm and its implementation in the FronTier code and vali-
dation is described in Section 3. Applications of FronTier to the numerical
simulation of the mercury target for the Muon Collider/Neutrino Factory is
presented in Section 4. Finally, we conclude the paper with a summary of
our results and perspectives for future work.

2 Governing Equations

The system of MHD equations [13, 19] contains a hyperbolic system of the
mass, momentum and energy conservation equations for the fluid and a
parabolic equation for the evolution of the magnetic field:

∂ρ

∂t
= −∇ · (ρu), (1)

ρ

(

∂

∂t
+ u · ∇

)

u = −∇P + ρg +
1

c
(J ×B), (2)

ρ

(

∂

∂t
+ u · ∇

)

e = −P∇ · u + ρu · g +
1

σ
J2, (3)

∂B

∂t
= ∇× (u ×B) −∇× (

c2

4πσ
∇×B), (4)

∇ ·B = 0, (5)
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P = P (ρ, e). (6)

Here u, ρ and e are the velocity, density, and the specific internal energy of
the fluid, respectively, P is the pressure, g is the gravitational acceleration,
B is the magnetic field induction, J = c

4π
∇ × H is the current density

distribution, and σ is the fluid conductivity. The magnetic field H and the
magnetic induction B are related by the magnetic permeability coefficient µ:
B = µH. In the system (1) - (4), we neglected effects of the heat conduction
and viscosity. Equation (5) is the solenoidal property of the magnetic field,
and (6) is the equation of state (EOS) that closes the system (1) - (4). We use
the Gaussian units throughout the paper for all electromagnetic quantities
except large values of the magnetic field which for convenience are given in
Tesla.

The behavior of a fluid in the presence of electromagnetic fields is gov-
erned to a large extent by the magnitude of the conductivity. Being rela-
tively poor conductors, most of liquid metals including mercury and weakly
ionized gases are characterized by small diffusion times of the magnetic field

τ =
4πµσL2

c2
,

where L is a characteristic length of the spatial variation of B. If the eddy
current induced magnetic field in such materials is also negligible compared
to the external field, the system of equations (1) - (4) can be simplified using
the low magnetic Reynolds number approximation [19]. If the magnetic
Reynolds number

ReM =
4πvσL

c2

is small, the current density distribution can be obtained from Ohm’s law

J = σ

(

−gradφ +
1

c
u×B

)

, (7)

where φ is the electric field potential. Due to the charge neutrality, the
potential φ satisfies the following Poisson equation

∇ · (σ∇φ) =
1

c
∇ · σ(u ×B). (8)

For numerical computation, such an approach effectively removes fast time
scales associated with the magnetic field diffusion. Equation (5) is automat-
ically satisfied for an external magnetic field created by a realistic source.
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The following boundary conditions must be satisfied at the interface Γ
of a conducting fluid with a dielectric medium:

i) the normal component of the velocity field is continuous across the
interface;

ii) the pressure jump at the interface is defined by the surface tension T
and main radii of curvature:

∆P |Γ = T

(

1

r1

+
1

r2

)

; (9)

iii) the normal component of the current density vanishes at the interface
giving rise to the Neumann boundary condition for the electric potential

∂φ

∂n

∣

∣

∣

∣

Γ

=
1

c
(u ×B) · n, (10)

where n is a normal vector at the fluid free surface Γ.
In this paper, we propose a numerical algorithm for the MHD system of

equations in low ReM approximation (1) - (3), (7), (8) for free surface flows.

3 Numerical Algorithm and Implementation

The governing system of equations (1) - (3), (7), (8) is a coupled hyperbolic
- elliptic system in a geometrically complex moving domain. The coupling of
the hyperbolic and elliptic components is done using the operator splitting.
The fluid interface is represented as an explicit co-dimension one Lagrangian
mesh moving through a volume filling Eulerian mesh. The propagation and
redistribution of the interface using the method of front tracking [2, 8] is per-
formed at the beginning of the time step. Then interior states are updated by
high resolution hyperbolic solvers such as the Monotonic Upstream-centered
Scheme for Conservation Laws (MUSCL) [26]. At the end of the time step,
the elliptic system is solved using the finite volume discretization with in-
terface constraints in the spirit of the embedded boundary method [14], and
the interior states are updated by adding electromagnetic source terms. In
the next two sections, we describe numerical algorithms for the hyperbolic
and elliptic subsystems and their implementation in the FronTier code.

3.1 Hyperbolic problem and free surface propagation

Front tracking is an adaptive computational method in which a lower di-
mensional moving grid is fit to and follows distinguished waves in a flow.
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Tracked waves explicitly include jumps in the flow state across the waves
and keep discontinuities sharp. A key feature is the avoidance of finite dif-
ferencing across discontinuity fronts and thus the elimination of interfacial
numerical diffusion including mass and vorticity diffusion [2, 8]. Front track-
ing is implemented in FronTier [9, 10], a multiphysics code which is capable
of tracking and resolving topological changes of geometrically complex in-
terfaces in two and three space dimensions. Details of the front tracking
method and the structure of the FronTier code are described in the above
mentioned papers. In this section, we will describe only details of the algo-
rithm specific to the MHD system.

For free surface MHD flows, we are interested in tracking only fluid inter-
faces which are contact discontinuity curves of the corresponding Riemann
problem [5]. The interface propagation consist of normal and tangential
propagation of each interface point. Since the tangential propagation in the
MHD case is essentially equivalent to the algorithm described in [10], we
will concentrate here only on the algorithm for the normal propagation of
interface points.

In the operator splitting scheme, the system of equations (1) - (3) can
be considered as a pure hydrodynamic system in an external field given
by the Lorentz force. Since this force depends on material properties, the
interface propagation algorithm is different from that for the gravity force
[10]. Normal point propagate seeks to solve a generalized Riemann problem
for the projection of the flow equations onto the direction normal to the
front at the point being propagated. The projection of the system (1) - (3)
into the normal direction N yields the following one dimensional system

∂ρ

∂t
+

∂ρvN

∂N
+

αN0

r
ρvN = 0,

∂ρvN

∂t
+

∂
(

ρv2
N + P

)

∂N
+

αN0

r
ρv2

N = ρgN +
1

c
(J ×B)N ,

∂ρvT

∂t
+

∂ρvNvT

∂N
+

αN0

r
ρvNvT = 0, (11)

∂ρE

∂t
+

∂ (ρEvN + PvN )

∂N
+

αN0

r
(ρEvN + PvN ) = ρgNvN .

Here N0 is the r component of the normal vector N, ∂/∂N = N · ∇ is the
directional derivative in the direction N, AN = A ·N is the normal compo-
nent of a vector field A and AT = A−ANN is the corresponding tangential
component. The parameter α is equal to 1 for cylindrical coordinate system
axially symmetric with respect to z axis, 2 for spherical coordinate system,
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Figure 1: Schematic of a stencil for the normal point propagation algorithm.

and 0 otherwise. The implementation of geometric source terms correspond-
ing to the cylindrical and spherical systems of coordinates is given in [10].

A 5-point stencil for the point propagation algorithm is schematically
shown in Figure 1. The algorithm has three main steps: slope reconstruc-
tion to compute approximation to the flow gradients along the normal line,
prediction using the Riemann problem solution, and correction to account
for the flow gradients on both sides of the front and to include geometric
and body terms.

The reconstructions step is standard and used in many shock capturing
methods. In the prediction step (see Figure 2a), we solve the Riemann prob-
lem with states s−0 and s+0 to calculate the interface velocity W0 at the
beginning of the time step. Using this velocity, we can estimate the position
of the interface xI at the end of the time step. The middle states of the so-
lution of the Riemann problem also provide the interface states s−I and s+I

at the new interface position xI . The correction step starts with obtaining
states connected by characteristics with the states at the predicted inter-
face position. Namely, we trace back the incoming characteristics from the
predicted new front position using the velocity and sound speeds computed
from the Riemann problem, and use the slope reconstruction algorithm to
approximate the states sf and sb at the feet of characteristics (Figure 2b).
Then the Riemann problem with the input states sf and s−0 is solved and
the right wave state of the solution, sll, approximates the wave incoming
on the contact at time t0 + dt from the left. Correspondingly, the Riemann
problem with the input states sb and s+0 is solved and the left wave state
of the solution, srr, approximates the wave incoming on the contact at time
t0+dt from the right. The states sll, and srr are then modified by the action
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Figure 2: Schematic of a the normal point propagation algorithm. RP
denotes the procedure of solving the Riemann problem and extracting of
the middle states from the solution.

of the Lorentz force which was computed at the previous time step. The
resulting states sllm, and srrm approximate the state of the flow at the end
of the time step. Notice that in most of practical calculations only the left
or right pair of states has to be modified since the conducting fluid is on
only one side of the interface. Finally, the Riemann problem with the input
state sllm and srrm is solved to obtain approximations of the left and right
states at the front, sl and sr, and the front velocity V at the time t0 + dt.
The procedure is illustrated in Figure 2c. Assuming that the acceleration of
the interface is constant during the time step, the interface velocity during

the time step is approximated as W = (W0 +V )/2. However if strong waves
are not present in the vicinity of the interface, we simplify the algorithm
and approximate the final interface states by solving the Riemann problem
with the input states sfm and sbm obtained from states sf and sb by the
action of the Lorentz force as shown in Figure 2d. This allows to reduce the
computational time by eliminating two relative expensive Riemann problem
steps for every interface point.

Two techniques for the redistribution of interfaces and resolving their
topological changes, the grid free and grid based tracking, have been devel-
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oped [9]. In the first method, interface points are always independent of the
rectangular grid while in the second method the interface points are formed
by the intersection of the interface with the rectangular grid lines. Since
the first algorithm is more accurate and sufficiently robust, especially in 2D,
we use it for the interface propagation in the hyperbolic part of the MHD
algorithm. However we always transform the interface to the grid based one
at the beginning of the elliptic time step since such an interface ideally suits
our finite volume discretization technique for the Poisson equation described
in the next section. Notice that in many practical applications, it is suffi-
cient to perform the expensive elliptic step once per several hyperbolic time
steps.

The final phase of the hyperbolic time step update consists of computing
new states on the rectangular spatial grid. Several different shock capturing
methods have been implemented in FronTier. They include both direc-
tionally splitted MUSCL (Monotonic Upstream-centered Scheme for Con-
servation Laws [26]) type schemes such as the Piecewise Linear, Piecewise
Parabolic Method [3], a second order MUSCL scheme developed by I. L.
Chern, and an unsplit MUSCL scheme [4]. Several exact and approximate
Riemann solvers are available for use by these methods.

3.2 Elliptic problem for irregular domains

The embedded boundary method is based on the finite volume discretization
in grid cells. The domain boundary is embedded in the rectangular Carte-
sian grid, and the solution is treated as a cell-centered quantity, even when
these centers are outside of the domain. This treatment has the advantages
of dealing with geometrically complex domains and ensures second-order
accuracy of solutions [14].

We will describe the method and implementation for the MHD elliptic
problem, namely the Poisson equation (8) with Neumann boundary condi-
tion (10). Using the divergence theorem and integrating the flux f = σ∇ϕ
over the control volume, the differential operator can be discretized as

(Lϕ)∆i,j
=

1

areai,j

(

∑

k

Fklk + F f lf

)

(12)

where areai,j is the area of the control volume,Fk is evaluated at the middle
point of all cell edges, and lk is the corresponding edge length. For full
cell edges (not cut by the boundary),Fk is obtained by centered difference
while for partial cell edges it is the linear interpolation between values at
the midpoints of full edges. The flux F f across the domain boundary, as in
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Figure 3: Linear interpolation of flux

the left part of Fig. 3, is given by the Neumann boundary condition and lf
equals the length of the boundary edge cd. The linear interpolation for the
partial cell edge flux F is shown on the right with

Fj+1 =
ϕi+1,j+1 − ϕi,j+1

hx

; Fj =
ϕi+1,j − ϕi,j

hx

F = σm

((1 + a)

2
Fj +

(1 − a)

2
Fj+1

)

where a = |ef |
|eg| is length fraction of the partial cell edge,hx is the grid spacing

in x direction and σm is evaluated at m, the middle point of the edge ef .
In order to implement the embedded boundary method, the interface is

reconstructed using its intersections with grid lines. The following assump-
tions and simplifications are made. The number of intersection of each grid
cell with the boundary curve must be either 0 or 2. This is generally satis-
fied when curvature of interface is not too large or the grid is fine enough.
As a result, there are only three possible configurations for the partial cells
cut by the boundaries, triangle, trapezoid and pentagon, as shown in Fig 4.
The other approximation is that the positions of the boundary points are
adjusted to remove cells with volumes less than certain preset value. This
means to shift the points mostly by a distance of tolerance·h,where h is the
grid spacing. This modification is necessary since cells of arbitrary small
volumes introduce large numerical errors and increase the condition number
for the discretized linear system.

We summarize our implementation of the algorithm as follows:
(1) The elliptic domain boundary is constructed using intersection points
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of the grid free interface with grid lines. With the information from the
reconstruction, material components type of both the grid points and cell
centers are also properly set.

(2) All grid cells are divided into three types: FULL, PARTIAL and EX-
TERNAL, which mean completely within, partially within, and completely
outside of the computational domain for the elliptic problem. During the
procedure of counting blocks, both FULL and PARTIAL cell are counted
and the total number is gathered from all processors and used to set the
matrix dimension for the linear system.

(3) Local and global coordinates of finite volume cells are stored, and
the buffer zone is created for subdomains via MPI communication between
neighboring processors. This is needed for two reasons. One is for the finite
volume discretization, the other is to calculate the flux across the subdomain
boundaries after solving the linear system.

(4) With the relative positions of crossings and material components at
grid corners, the configuration of partial cells can be uniquely determined.
Then stencils for the discrete Laplacian operator are chosen and the cor-
responding coefficients are inserted into the matrix. The stencil choice for
a pentagon partial cell is illustrated in Fig. 5. a and b, as in Figure 3
correspond to the length fractions of the related edges. The finite volume
discretization can be written as:

(Lϕ)∆i,j
=

i+1
∑

p=i−1

j+1
∑

q=j−1

c(p, q)ϕp,q + F f lf

c(i, j) =
1

area

(

− σ2

hx

hy
− σ3

hy

hx
− σ4

b(1 + b)hx

2hy
− σ1

a(1 + a)hy

2hx

)

c(i, j − 1) =
1

area

(

σ4

b(1 + b)hx

2hy

)

; c(i − 1, j) =
1

area

(

σ1

a(1 + a)hy

2hx

)
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Figure 5: Stencil setting for partial cell

c(i+1, j −1) =
1

area

(

σ4

b(1 − b)hx

2hy

)

; c(i−1, j +1) =
1

area

(

σ1

a(1 − a)hy

2hx

)

c(i, j+1) =
1

area

(

σ2

hx

hy
−σ1

a(1 − a)hy

2hx

)

; c(i+1, j) =
1

area

(

σ3

hy

hx
−σ4

b(1 − b)hx

2hy

)

c(i − 1, j − 1) = c(i + 1, j + 1) = 0

σi(i = 1,2,3,4) are evaluated at cell edge centers(points 1,2,3 and 4 in Fig.
5) and term F f and lf with the same meaning as in equation (12).

(5) The boundary flux in equation (10), determined explicitly by the
Neumann Boundary conditions, is moved to the right side. Since the right
hand side, which must be evaluated at the centroid of a partial cell, has
the divergence form of a vector field (∇ · (u × B)), the divergence theorem
is applied to replace the divergence with finite volume integration of flux
across boundary. This cancels the gradient of potential and flux of u×B in
the normal direction to the boundary since they are equal by the boundary
condition.

(6) The resulting linear system is solved. We use preconditioners and
iterative solvers implemented in PETSc [1] and HYPRE [12] libraries.

(7) The gradient of the potential is calculated via finite differences and
the current density is calculated from equation (7). Then the interior mo-
mentum states are modified by adding the Lorentz force term. Notice that
if the hyperbolic system is written in terms of conserved variables, namely
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the density, momentum, and total energy density, the last variable remains
unchanged. It is easy to verify that the external magnetic field does not
change the total energy of the system, and the increase of the internal en-
ergy due to Joule’s heat is canceled by the decrease of the kinetic energy
due to the Lorentz force.

3.3 Validation of the elliptic technique

An extensive theoretical analysis of the method of front tracking for hyper-
bolic systems of conservations laws has already been done, and the method
has been validated and tested on problems of Rayleigh-Taylor and Richtmyer-
Meshkov surface instabilities (see for example [6, 7] for the comparison of
theoretical, numerical, and experimental data of Rayleigh-Taylor mixing
rates). Since the described elliptic technique is new to the method of front
tracking and the FronTier software, we have validated it using analytical
solution of a simple elliptic problem. Namely, we solve numerically the
Neumann problem

ϕxx + ϕyy = f ,

∂ϕ

∂n

∣

∣

∣

∣

Γ

= g,

with f and g obtained by differentiating the exact solution ϕ = ek1x2+k2y2

.
The problem is solved in an irregular domain shown in Figure 6.

Since the Neumann boundary problem has solution with an arbitrary
constant, we only show the convergence behavior of the gradient of the
solution. The convergence rate R is given by the formula:

R = log
(‖ en+1 ‖

‖ en ‖

)

/

log
(hn+1

hn

)

en+1 and en are error vectors corresponding to grid spacing hn+1 and hn.
In our calculation, the 2-dimensional l2,∆x norm is used. From Table 1,
we can conclude that the computed gradient of solution has the first order
accuracy, therefore the computed potential is second order accurate. In Fig.
7, the contour of the gradient error in the x direction is shown for grid 64x64
(left) and grid 128x128 (right). With the setting of a Dirichlet point and
eliminating the constant from the solution, we can also conclude that the
accuracy of the computed solution is of second order. All test calculations
were performed on 4 processors using a 2x2 domain decomposition.
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Figure 6: Computational domain

Table 1: Convergence results for the gradient of the solution

mesh size error ϕx R

32x32 2.4961e-02 N/A

64x64 8.8409e-03 1.497

128x128 3.0935e-03 1.506

256x256 1.0957e-03 1.503
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(a) (b)

Figure 7: Error of the calculated gradient of the potential in x direction

4 Application: Numerical Simulation of the Muon

Collider/Neutrino Factory Target Experiment.

In this section, we present results of the numerical simulation of a liquid
mercury jet interacting with an intensive proton pulse in a 20 Tesla mag-
netic field. Such a jet will be used as a target in the proposed Muon Col-
lider/Neutrino Factory [20]. The target is shown schematically in Figure 8.
It will contain a series of mercury jet pulses of about 0.5 cm in radius and
60 cm in length. Each pulse will be shot at a velocity of 30-35 m/sec into
a 20 Tesla magnetic field at a small angle (0.1 rad) to the axis of the field.
When the jet reaches the center of the magnet, it is hit with a 3 ns proton
pulse depositing about 100 J/g of energy in the mercury.

The actual energy deposition in the mercury jet due to the interaction
with protons was calculated using a Monte-Carlo code MARS [20]. The en-
ergy deposition profile can be accurately approximated by a two-dimensional
Gaussian function in cylindrical coordinates. Since the angle between the
jet axis and the magnetic field lines is small, the off-axial component of
the magnetic field can be ignored for the study of short time scale hydro-
dynamic processes caused by the proton energy deposition (the off-axial
magnetic field could not be ignored in the study of some other aspects of
this problem, for example the relatively long time scale entrance of the jet
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Figure 8: Schematic of the target for the Muon Collider/Neutrino Factory.

into the magnetic field). In the assumption of a uniform magnetic field, only
the radial motion of the mercury induces eddy currents. We have performed
2d numerical simulations in the transverse plane intersecting the jet at the
maximum point of energy deposition. Other hydro and MHD aspects of the
target problem were studied numerically in [24, 25].

The influence of the 3 ns proton pulse was modeled by adding the proton
beam energy density to the internal energy density of mercury at a single
time step which caused the increase of pressure to 16 kbar in the center.
Strong pressure waves in the mercury jet cause the jet expansion. Previous
numerical simulations performed with a single phase equation of state (EOS)
for liquid mercury (stiffened polytropic EOS) have shown that the strength
of rarefaction waves in the jet significantly exceeds the mercury cavitation
threshold. We believe that the formation of cavities takes place in strong
rarefaction waves, and cavitation bubbles influence the wave dynamics in
mercury and the jet surface evolution. This conclusion is supported by
first targetry experiments on the jet - proton pulse interaction without the
magnetic field [15]. In order to capture the formation and dynamics of the
two-phase domain of bubbly mercury, we have used a simple homogenized
two-phase equation of state [25]. The EOS consists of three branches. The
pure vapor and liquid branches are described by the polytropic and stiffened
polytropic [21] EOS models, respectively, reduced to a single isentrope. The
two branches are connected by a model for the liquid-vapor mixture

P = Psat,l + Pvllog

[

ρsat,vasat,v
2(ρsat,l + α(ρsat,v − ρsat,l))

ρsat,l(ρsat,vasat,v
2 − α(ρsat,vasat,v

2 − ρsat,lasat,l
2))

]

,

where ρsat,v, ρsat,l, asat,v , asat,l are the density and the speed of sound of
vapor and liquid in saturation points, respectively, Psat,l is the liquid pressure
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in the saturation point, α is the void fraction

α =
ρ − ρsat,l

ρsat,v − ρsat,l

,

and the parameter Pvl is

Pvl =
ρsat,vasat,v

2ρsat,lasat,l
2(ρsat,v − ρsat,l)

ρsat,v
2asat,v

2 − ρsat,l
2asat,l

2
.

These expressions were derived by integrating an experimentally validated
model for the sound speed in a bubbly mixture [27]. The conductivity of
the two-phase mixture of mercury was approximated as a linear function of
the void fraction

σ(x, t) = (1 − α(x, t))σ0,

where σ0 = 1016s−1 is the conductivity of liquid mercury at normal condi-
tions.

Our simulations show that pressure waves in the mercury jet caused by
the proton energy deposition lead to the formation of a two-phase cavitation
domain in the center and the jet (see Figures 9(a) and 11). However the
jet cavitation and expansion are strongly reduced in a magnetic field and
almost completely suppressed when the magnetic field strength reaches 20
Tesla (see Figures 9(d) and 11(b)). These results are in agreement with
numerical simulations performed earlier using simple approximations [25].
Figure 10 shows schematically the distribution of the electric current den-
sity in the jet induced by the radial expansion. It is easy to see that the
corresponding Lorentz force reduces the jet expansion. The jet expansion
velocity at B = 0 calculated from the graph 11(a) is in a very good agree-
ment with experimentally measured values [15], which give us a confidence
in predictive capabilities of the equation of state for the two phase mixture
and EOS parameters. All past experiments have been performed without
magnetic fields but the preparation for a new series of experiments involv-
ing mercury jets interacting with powerful proton beams and in a 15 Tesla
solenoid are underway at CERN, Geneva.

Notice that although small amplitude perturbations were imposed ini-
tially on the jet surface, the late time jet evolution did not exhibit surface
instabilities (see Figure 9). This surface smoothening was caused by the use
of the homogenized equation of state for cavitating fluid. Due to averaging
of fluid properties on relatively large spatial scales, such an EOS makes it
impossible to study complex wave patterns at small scales that influence
surface perturbations. To improve the cavitation modeling and simulation
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(a) B = 0 (b) B = 10 Tesla (c) B = 20 Tesla (d)

Figure 9: Density distribution in the cross-section of the mercury jet at
t = 160 microseconds in magnetic fields ranging from 0 to 20 Tesla

Figure 10: Distribution of the induced current density in the jet cross-section
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Figure 11: Mercury jet evolution in magnetic fields ranging from 0 to 20
Tesla

of wave dynamics in the presence of cavitation bubbles at small scales, we
have developed a numerical algorithm for the dynamic creation of explicitly
tracked cavitation bubbles [28]. Results of the direct numerical simulation
in the mercury jet in the presence of a magnetic field will be presented in a
forthcoming paper.

5 Conclusions

We have developed a numerical algorithm and computational software for
the numerical simulation of fundamental and applied problems of free surface
magnetohydrodynamic (MHD) flows at low magnetic Reynolds numbers of
compressible conducting liquids partially ionized plasmas in the presence of
phase transitions and high power particle and laser beams. The correspond-
ing governing equations constitute a coupled hyperbolic - elliptic system
in geometrically complex and evolving domains. The numerical algorithm
includes the interface tracking technique for hyperbolic problems, modified
Riemann solvers for phase boundaries, meshing and discretization of elliptic
equations in complex domains with interface constraints using the embedded
boundary method, and high performance parallel solvers such as MUSCLE-
type schemes for hyperbolic problems and iterative solvers implemented in
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the PETSc and HYPRE packages. An extensive theoretical analysis of the
method of front tracking for hyperbolic systems of conservations laws has
already been done, and the method has been validated and tested on prob-
lems of Rayleigh-Taylor and Richtmyer-Meshkov surface instabilities. The
elliptic algorithm is second order accurate for the electric potential except
for the interface. It, however, does not significantly reduce the accuracy
of the method since the electromagnetic forces on the interface, as it was
shown in Section 3.1, are obtained by propagating states along characteris-
tics from interior to the interface in most of practical cases. The method was
validated in the current work using analytical solutions of a simple elliptic
problem.

The MHD algorithm has been applied for the numerical simulations of
liquid mercury target for the Muon Collider/Neutrino Factory. The target
has been proposed a mercury jet interacting with an intense proton pulse in
a 20 Tesla magnetic field. Our simulation used a homogenized EOS for two-
phase liquid in order to capture the rarefaction wave induced cavitation in
the mercury jet and the jet expansion. The numerically computed velocity of
the jet expansion agrees quantitatively with experimental data. We showed
that the magnetic field reduces both the jet cavitation and expansion. These
results are in qualitative agreement with previous simulations which used
other simplifying assumptions.

Other current and future applications of developed models and software
include such challenging projects as refueling of tokamaks through the injec-
tion of frozen deuterium pellets, and the laser driven acceleration of pellets
by ablation recoil (rocket) effect. Applied research is being done in col-
laboration with General Atomics Fusion Group, Muon Collider/Neutrino
Factory Collaboration, and Princeton Plasma Physics Laboratory.
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