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• SPH simulations of jets interacting with proton 
beams

• Fluid – structure interaction with SPH and 
mercury thimble simulations

• Front tracking simulations of free surface MHD at 
large density ratios



Main Idea of SPH
Computing density of continuum using particles 

Particle-mesh 
methods

Sum of particles 
in disks

SPH:
• Density is weighted 
sum of particles
• Each particle 
represents a 
Lagrangian cell
• No particle 
connectivity
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Main Approach of SPH 
• Kernel approximation: replace the delta-function with a 
smooth kernel function

• Approximate this integral using some particle distributions

Momentum PDE in Lagrangian system

Discretized Momentum Equation

• Discretize Navier-Stokes (or MHD) equations in Lagrangian form



Benefits of SPH
• A parallel SPH hydro / MHD code has been developed

• Collection of solvers, smooth kernels, EOS and other 
physics models  

• Exact conservation of mass (Lagrangian code)

• Natural (continuously self-adjusting) adaptivity to density 
changes

• Capable of simulating extremely large non-uniform domains

• Ability to robustly handle material interfaces of any complexity

• Scalability on modern multicore supercomputers



SPH Simulations
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 Disruption of mercury targets interacting with proton 
pulses

 Entrance of spent mercury jets into the mercury pool



Muon Collider:
15 bunches / s
66.7 ms interval
208 teraproton per bunch

Muon Collider vs Neutrino Factory

Neutrino Factory:
150 bunches / s
6.67 ms interval
20.8 teraproton per bunch

Beam: 8 GeV, 4 MW, 3.125e15 particles/s, r.m.s. rad = 1.2 mm

Maximum pressure (estimate):
Muon Collider:  Pmax = 110 kbar
Neutrino Factory: Pmax = 11 kbar



Mercury Jet after Interaction with Proton Pulse 



SPH Simulations of mercury 
thimble experiments
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Experimental Setup
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Typical Experimental Results
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Mercury splash at t = 0.88, 1.25 and 7 ms after proton impact of 3.7 
teraprotons



Simulation results
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Simulation results
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FronTier Simulations of 
Incompressible MHD at Large 

Density Ratios
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Equations of Incompressible MHD at Low 
Magnetic Reynolds Numbers 
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Equations of Incompressible MHD at Low 
Magnetic Reynolds Numbers 
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Main Idea of Front Tracking

• Front tracking is a hybrid Lagrangian-Eulerian method for 
systems with sharp discontinuities in solutions or material 
properties

Volume filling
rectangular 

mesh
(Eulerian 

Coord.)

(N-1) dimensional Lagrangian 
mesh (interface)
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Verification and Validation:

Mercury Jet in Transverse Magnetic Field

Real density ratio, sharp interface
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Verification and Validation:

Mercury Jet in Transverse Magnetic Field

Real density ratio, sharp interface
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Verification and Validation:

Mercury Jet in Transverse Magnetic Field

Density ratio 10, smoothed interface
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Verification and Validation:

Mercury Jet in Transverse Magnetic Field

Density ratio 10, smoothed interface


