Workshop on Applications of High Intensity Proton Accelerators October 19 - 21, 2009, FNAL

Simulation of High-Intensity Pulsed Beam Targeting

Roman Samulyak (October 20, 2009)

AMS Department, Stony Brook University andComputational Science Center Brookhaven National Laboratory Collaborators:

Wurigen Bo, Shuqiang Wang (Stony Brook) Harold Kirk (BNL), Kirk McDonald (Princeton)

1

Talk Overview

- $\overline{}$ Simulation of mercury jet target: main goals
- FronTier code for multiphase, multiphysics simulations
	- Typical applications of the FronTier code related to energy research
- **Simulation of liquid mercury jet target for Neutrino** Factory / Muon Collider and comparison with MERIT experiment

Motivation of the Present Study of the Mercury Target

- Understanding of the hydrodynamic response of the mercury target and explanation of all details of MERIT data is necessary for the future target design
- Using improved 3D FrontTier capabilities, perform new series of full 3D simulations of the mercury target with resolved all relevant physics processes
- Perform full benchmark of simulations with MERIT data and fine-tune FronTier models
- After the benchmark, FronTier can be used for reliable predictions of future targets.

Mercury Jet Target for Neutrino Factory / Muon Collider

- \bullet Target is a mercury jet interacting with a proton pulse in a magnetic field
- Target converts protons to pions that decay to muons and neutrinos or to neutrons (accelerator based neutron sources)
- \bullet Understanding of the target hydrodynamic response is critical for design
	- Studies of surface instabilities, jet breakup, and cavitation
	- MHD forces reduce both jet expansion, instabilities, and cavitation

4

Jet disruptions Top: experiment Target schematic Bottom: simulation

B NA'

Main Ideas of Front Tracking

Front Tracking: A hybrid of Eulerian and Lagrangian methods

Two separate grids to describe the solution:

- 1. A volume filling rectangular mesh
- 2.An unstructured codimension-1 Lagrangian mesh to represent interface

Major components:

5

- 1.Front propagation and redistribution
- 2. Wave (smooth region) solution

- No numerical interfacial diffusion
- Real physics models for interface propagation
- Different physics / numerical approximations in domains separated by interfaces

The *FronTier* Code

- •FronTier is a parallel 3D multiphysics code based on front tracking
- •Being developed within DOE SciDAC program
- •Adaptive mesh refinement
- • Physics models include
	- •Compressible and incompressible fluid dynamics, MHD
	- •Flows in porous media
	- •Phase transitions and turbulence models

Turbulent fluid mixing. Left: 2DRight: 3D (fragment of the interface)

Fusion Energy. ITER project: fuel pellet ablation

- ITER is a joint international research and development project that aims to demonstrate the scientific and technical feasibility of fusion power
- ITER will be constructed in Europe, at Cadarache in the South of France in ~10 years

Our contribution:

ni plet

Potential (z)

New Ideas in Nuclear Fusion: Palsma Jet Induced Magneto Inertial Fusion

FronTier Application: NERI Collaboration of RPI, SBU, Columbia, and BNL. Fuel Rod Failures in Sodium Coled Reactors

Simulations of the mercury jet mercury entrance into the ma gnetic field

Distortion of the jet entering 15 T solenoid

B = 15 TV0 25 / = m/s

Top: Aspect ration of the jet entering 15 T solenoid

Obtained an excellent agreement with theory and experiments (Oshima at al) on the jet distortion

MERIT target simulations by FronTier agreed well with HyperMAG simulations (Neal Morley)

Predicted jet distortion in three view ports (MERIT experiment)

Our simulations underestimeted the jet distortion. Some other factors need to be resolved

Experimental data

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

B = 15T B = 15T

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture. The same are needed to see this picture.

 $V = 15$ m/s, $B = 10T$ $V = 20$ m/s, $B = 10T$

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

QuickTime™ and a TIFF (LZW) decompressor

Simulations only qualitatively explain the width of the jet in different view ports.

Simulations of the mercury jet mercury interaction with p p roton pulses

3D Simuation of Jet Ejection from a Nozzle. High Speed Jet Cavitation, Breakup and Atomization

- We evaluated the influence of the initial jet turbulence on jet disruption due to the interaction with the proton pulse • Initial turbulence is negligible compared to proton pulse
- induced instabilities
- As a result, most of runs are done with idealized initial jet

Simulation setup for proton-jet interaction

- \bullet • Elliptic jet: Major radius = 0.8cm
- \bullet Minor radius $= 0.3$ cm
- Striganov's Energy deposition calculation for 14Gev, 10T proton beam is used. The peak pressure is 12,050 bar.

Evolution of the jet surface and cavitation bubbles for B=5T

Positions for the filament length calculation

 \blacksquare To obtain the expansion velocity along the jet surface, we evaluate the expansion length in 4 typical positions.

MHD Stabilizing Effect

- \bullet Right: From top to bottom, the jet surface at 150 microsecond under longitudinal magnetic field.
- \bullet Both the interior velocity and the surface velocity of the jet are decreasing with the increasing magnetic field.
- \bullet The MHD stabilizing effect is weaker than in the corresponding where circular current exists in filaments.

Image from the experiment, B=10T

No magnetic field

Brookhaven Science Associates U.S. Department of Energy 22

BRO ПKI NATIONAL LABORATORY

EN

Mesh refinement

 \blacksquare Maximum length of expansion for B=15T under mesh refinement.

The velocity of filaments in the major axis of the ellipse for different magnetic fields.

The velocity of filaments in the major axis of the ellipse for different magnetic fields: comparison of experiments and simulations

NATIONAL LABORATORY

Delay in the formation of filaments

Large (~25 microsecond) delay in the formation of filaments was not observed in simulations.

Currently the nature of this delay is not understood.

Conclusions and Future Plan

- \bullet New robust algorithm for topological change of 3D surface, 3D bubble insertion method coupling with the MHD code enabled large scale 3D simulations with complex geometry.
- \bullet Performed simulations of mercury jets interacting with magnetic fields
- \bullet • Observed good agreement with experiments on the filament velocity
- \bullet The delay of the filament formation was not observed in simulations.
- \bullet Need to clarify the physics of the observed delay of the jet disruption
- \bullet Further study of the jet entrance in the magnetic field will be performed and the contribution of several factors (velocity profile, turbulence etc) will be tested
- \bullet Comprehensive benchmark with MERIT experiments
- \bullet Simulations of mercury target at higher beam intensities
- \bullet Simulations of the mercury damp process
- \bullet Studies relevant to other target concepts (waterfall etc.)

