Horn/Target Material Studies at BNL Towards multi-MW Beam

Nick Simos, Ph.D., P.E.

Energy Sciences & Technology Departments National Synchrotron Light Source II

> LBNE Science Collaboration Meeting - FNAL July 15, 2009

Superbeam Target-Horn Concept (from BNL Study)

Superbeam Target-Horn Concept

BNL Graphite and Carbon Composite Target SHOCK Test

LBNE Science Collaboration Meeting - FNAL July 15, 2009

Horn Material Studies – NuMi Ni-plated Aluminum

LBNE Science Collaboration Meeting - FNAL July 15, 2009

Irradiation, temperature and corrosive environment effect on Ni film with aluminum substrate

LBNE Science Collaboration Meeting - FNAL July 15, 2009

Irradiation, temperature and corrosive environment effect on Ni film with aluminum substrate

AlBeMet[®] Property Comparison

Property	Beryllium S200F/AMS7906	AlBeMet AM16H/AMS7911	E-Material E-60	Magnesium AZ80A T6	Aluminum 6061 T6	Stainless Steel 304	Copper H04	Titanium Grade 4
Density Ibs/cuin (g/cc)	0.067 (1.86)	0.076 (2.10)	0.091 (2.61)	0.065 (1.80)	0.098 (2.70)	0.29 (8.0)	0.32 (8.9)	0.163 (4.6)
Modulus MSI (Gpa)	44 (303)	28 (193)	48 (331)	6.5 (45)	10 (69)	30 (205)	16.7 (115)	15.2 (105)
UTS KSI (Gpa)	47 (324)	38 (262)	39.3 (273)	49 (340)	46 (310)	76 (616)	45 (310)	95.7 (660)
YS KSI (Gpa)	36 (241)	28 (193)	N/A	36 (260)	40 (276)	30 (206)	40 (275)	85.6 (590)
Elongation %	2	2	< .05	5	12	40	20	20
Fatigue Strength KSI (Gpa)	37.9 (261)	14 (97)	N/A	14.6 (100)	14 (95)	N/A	N/A	N/A
Thermal Conductivity btu/hr/ft/F (W/m-K)	125 (216)	121 (210)	121 (210)	44 (76)	104 (180)	9.4 (16)	226 (391)	9.75 (16.9)
Heat Capacity btu/Ib-F (J/g-C)	.46 (1.96)	.373 (1.56)	.310 (1.26)	.261 (1.06)	.214 (.896)	.12 (.6)	.092 (.386)	.129 (.64)
CTE ppm/F (ppm/C)	6.3 (11.3)	7.7 (13.9)	3.4 (6.1)	14.4 (26)	13 (24)	9.6 (17.3)	9.4 (17)	4.8 (8.6)
Electrical Resistivity ohm-cm	4.2 E-06	3.6 E-06	N/A	14.5 E-06	4 E-06	72 E-06	1.71 E-06	60 E-06

The AlBeMet Choice

LBNE Science Collaboration Meeting - FNAL July 15, 2009

Radiation Damage of Ti-6AI-4V Substrate

Resistivity-Conductivity Degradation

LBNE Science Collaboration Meeting - FNAL July 15, 2009

Thermal Conductivity and Radiation of Target

LBNE Science Collaboration Meeting - FNAL July 15, 2009

Electrical resistivity -> Thermal conductivity

irradiated zone

LBNE Science Collaboration Meeting - FNAL July 15, 2009

3-D CC (~ 0.2 dpa) conductivity reduces by a factor of 3.2

2-D CC (~0.2 dpa) measured under irradiated conditions (to be compared with company data)

Graphite (~0.2 dpa) conductivity reduces by a factor of 6 !!!!

W (1+ dpa) Ta (1+ dpa) Ti-6Al-4V (~ 1dpa) Glidcop	* * * *	reduced by factor of ~ 40% reduction ~ 10% reduction ~ 40% reduction
AIBeMet (~0.4 dpa)	→	within 10%

Graphite and carbon-carbon composites

While things seemed promising with carbon fiber composites

A THRESHOLD PROTON FLUENCE OF ~10²¹ protons/cm² HAS EMERGED

LBNE Science Collaboration Meeting - FNAL July 15, 2009

Graphite-CC experience

Accelerator Experience:

TRIUMF Target; LANL Target; PSI Target

WATER RETURN AINLESS STEEL WATER SUPPLY MANIFOLD ELECTRON BEAM WELD ELECTRON BEAM WELD PPFI TUBES OPPER TO COPPER BRAZE YROGRAPHITE TARGET THERMOCOUPLE ROTON

The cracks

running through the plates develop at proton fluences above about 2x10²⁵ P/m². Plates from targets irradiated to about 0.5 of this fluence show extensive de-lamination, but lock the macroscopic cracks across the a-b planes. These results indicate that pyrolytic graphite is very susceptible to delamination, as would be expected from the low tensile strength in the c direction.

= 10^21 p/cm2

Water-cooled/Edge-cooled TRIUMF target

High operating temp ~1100 C

LBNE Science Collaboration Meeting - FNAL July 15, 2009

LBNE Science Collaboration Meeting - FNAL July 15, 2009

06/03/2009

Summary

A fluence threshold of ~ 10^{21} p/cm² has emerged that affects graphite and different carbon composite structures

Isotropic graphite (IG-430) appears to have more resilience (needs further study)

AlBeMet has experienced no structural damage due to radiation and environment

Proposed Studies

Address the effect of the environment on the physical/structural changes of graphite and carbon composites due to irradiation and identify limits

Explore isotropic graphite grades for irradiation damage that correspond to 2 MW beam

Horn material assessment for resistivity degradation under irradiation and corrosive environment (2 MW operation)

Skin Effect and resistance physio-mechanical property changes Horn options with materials other than AI (Albemet) or nanocoatings

Horn inner conductor-Target integration tests and high-end simulations (current through horn, cooling schemes such as helium, monolithic conductor/target made of AIBeMet, etc)

