
Solid Target Studies

N. Simos

Brookhaven National Laboratory

The Fundamental Problem with Solid Targets

24 GeV Protons on Copper Target

Parameters Affecting Shock Level in Solid Target

- Heat capacity (controlling temperature spike)
- Speed of sound in the material
- pulse length
- coeff. of thermal expansion
- Young's modulus

 $V_s =$ sound velocity in material

NOTE: If pulse is too short NO reduction in peak stress can be realized since heated zone does not have time to relax during deposition

What do we need materials to possess to get us to multi-MW Power Levels?

- low elasticity modulus • (limit \rightarrow Stress = E $\alpha\Delta T/1-2\nu$)
- low thermal expansion •
- high heat capacity
- good diffusivity to move heat away from hot spots
- high strength ٠
- resilience to shock/fracture strength
- resilience to irradiation damage That's All !

How do these parameters control limits?

Change in hydrostatic pressure ΔP is related to the energy density change ΔE_m through the Gruneisen equation of state

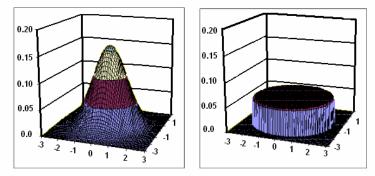
$$\Delta P = \Gamma \rho \, \Delta E_m$$

 $\boldsymbol{\Gamma}$ is the Gruneisen parameter related to material thermo-elastic properties such as:

Young's Modulus E Poisson's ratio v density ρ thermal expansion α constant volume specific heat c_v .

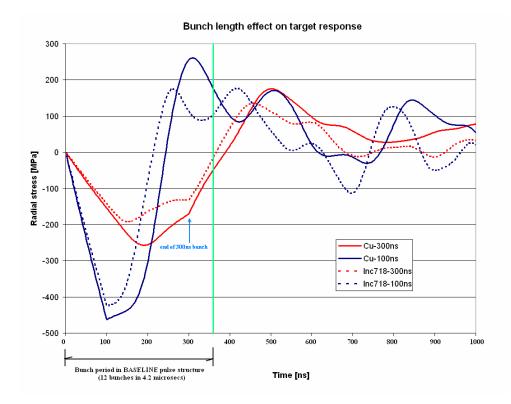
 $\Gamma = [E/(1-2v)] \alpha/(\rho c_v)$

Can Solid Targets Support a MW-class Machine and How?


Several "smart" materials or new composites may be able to meet some of the desired requirements:

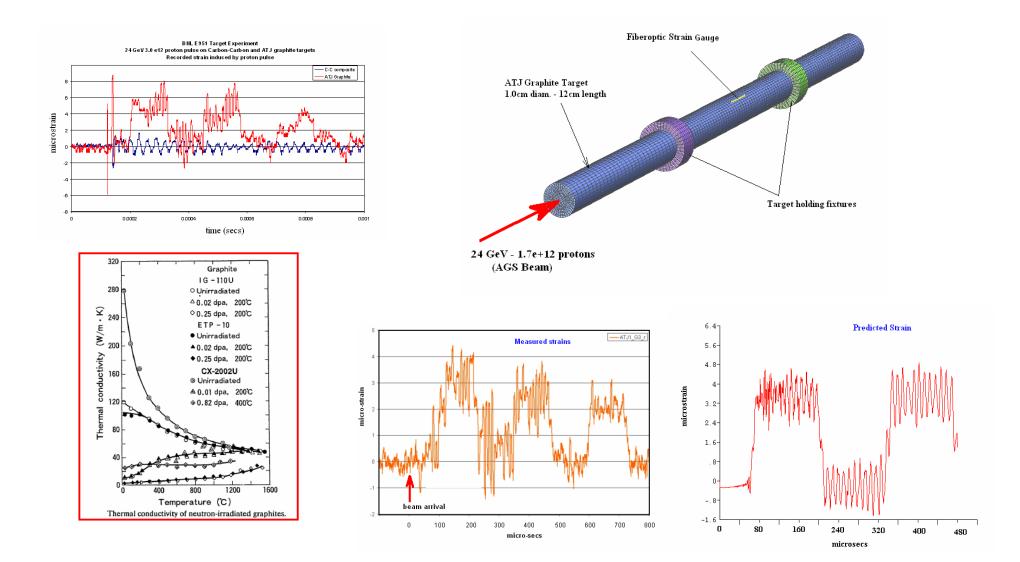
- new graphite grades
- customized carbon-carbon composites
- Super-alloys (gum metal, albemet, super-invar, etc.)

While calculations based on non-irradiated material properties may show that it is possible to achieve 2 or even 4 MW, irradiation effects may completely change the outlook of a material candidate

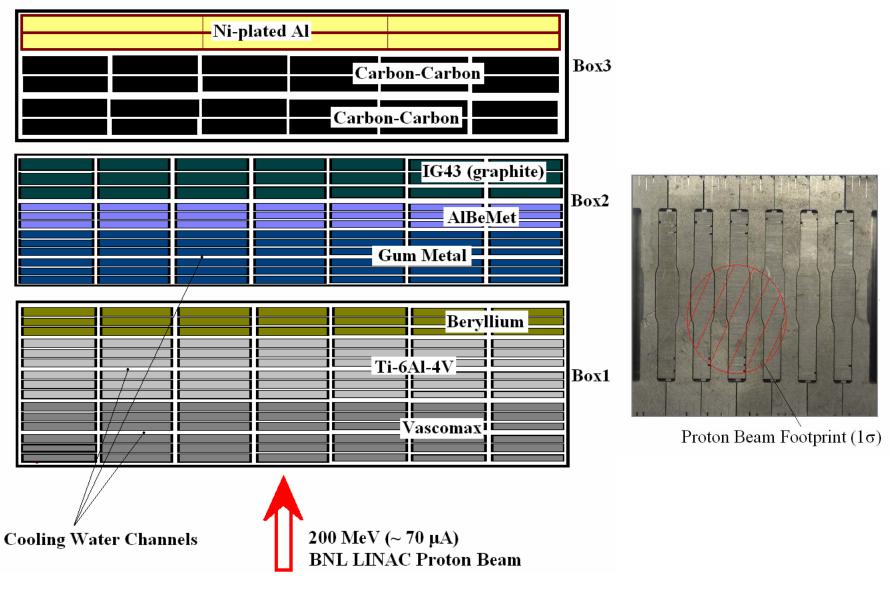

ONLY way is to test the material to conditions similar to those expected during its life time as target

Are there things we can do? YES !

Gaussian and equivalent uniform beam distribution for same number of particles


Target	25 GeV	16 GeV	8 GeV			
	Energy Deposition (Joules/gram)					
Copper	376.6	351.4	234			

Relevant Activity Status

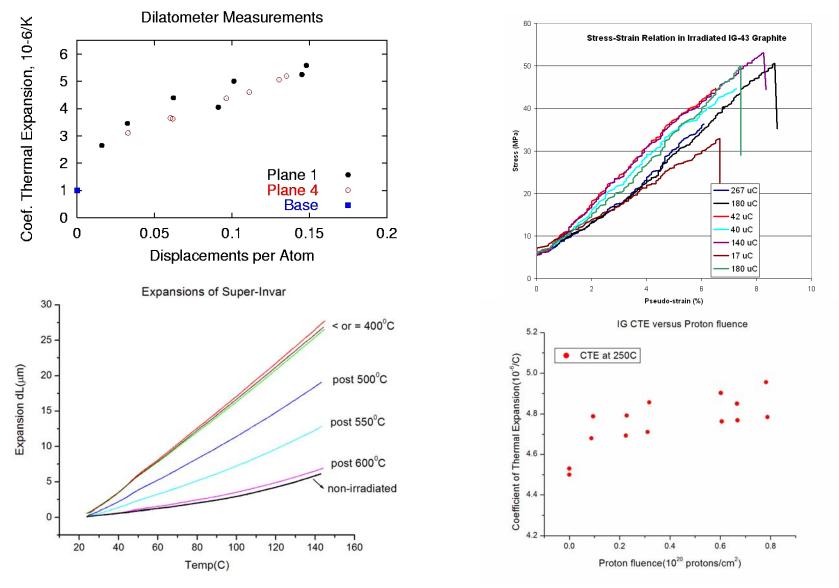

- Beam on targets (E951)
- Material irradiation
- New activities
 - irradiation studies/beam on targets
 - Laser-based shock studies
- Simulations and benchmarking
 - LS-DYNA (highly non-linear simulations which reflect on the 4-MW conditions)

CC Shock Response (BNL E951)

MuTAC Review - March 15-16 2006

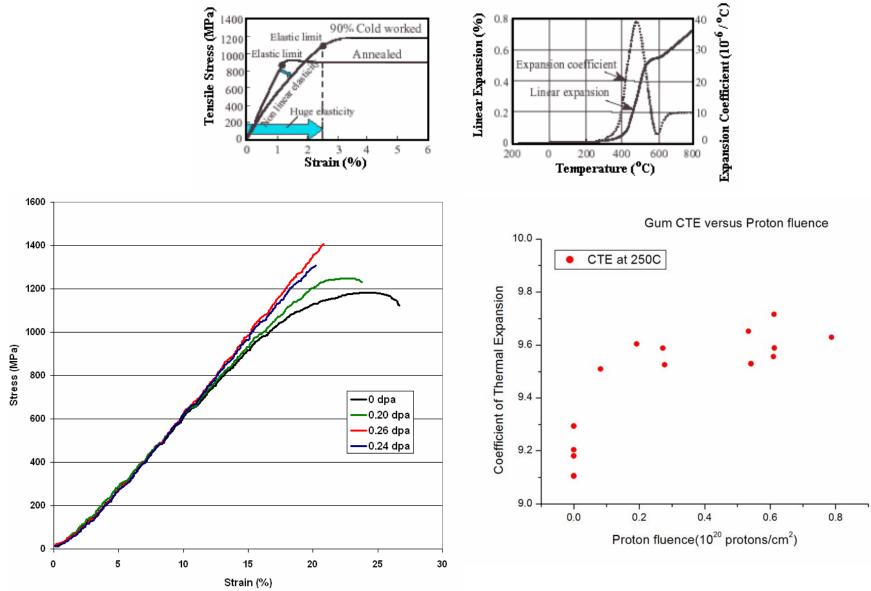
Irradiation Matrix (2004-05 Run)

3D CC "annealing" behavior

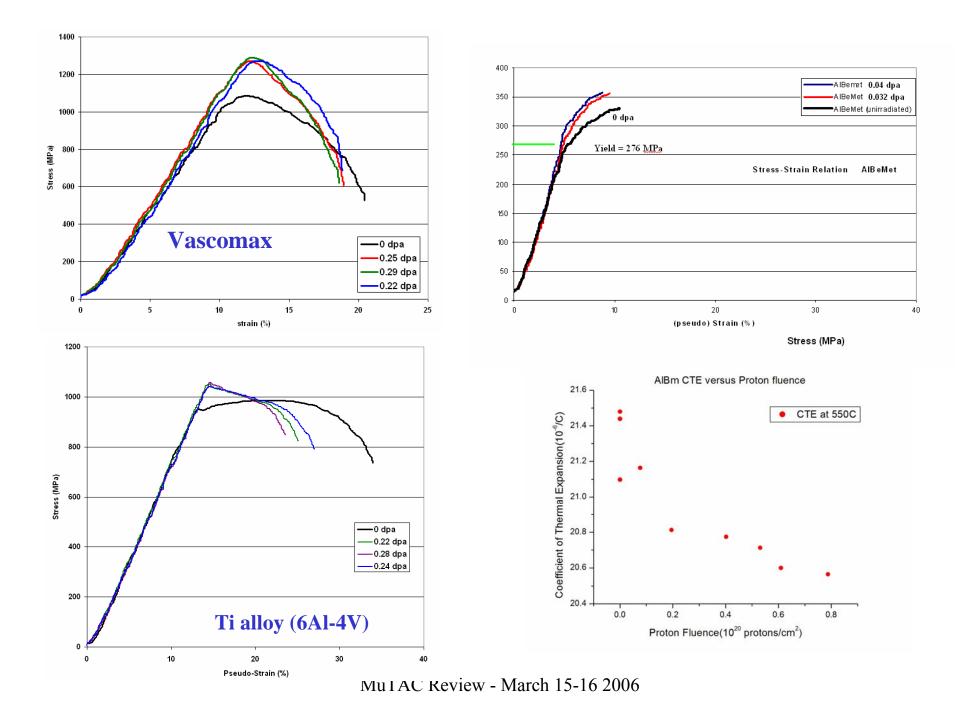

Self-Annealing of 2D Carbon-Carbon (fiber plane) 15 14 --Cycle_2 first cycle 10 - Cycle_3 12 last cycle -Non-irrad non-irradiated 10 -Expansion dL(µm) 8 sion (mic 6 -4 -Expa 2 --10 0 --15 -2 --4 --20 350 0 50 100 150 200 250 300 ò 50 100 150 200 250 300 Temp (C) Temperature(C) Self-Annealing of CC 2D (normal to fiber plane) 14 -60 first cycle -2D_CC_Z_Irrad_Cycle-1 50 -Cycle 2 12 last cycle -Cycle-3 non-irradiated 40 -Non-Irrad Expansion dL(µm) 10 30 8 20 E 10 6 ion 4 -10 2 -20 0 -30 -40 300 0 50 100 150 200 250 0 50 100 150 200 250 300 350 Temperature(C) Temp (C)

MuTAC Review - March 15-16 2006

2D CC "annealing" behavior


"annealing" behavior of Super Invar

Graphite (IG-43) response to irradiation

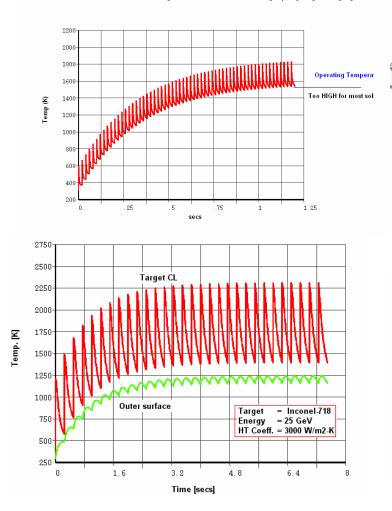


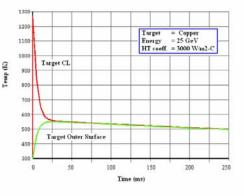
MuTAC Review - March 15-16 2006

90% cold-worked may be of interest (if it holds these properties after irradiation)

MuTAC Review - March 15-16 2006

Solid Targets – How far can they go?


1 MW ?	4 MW ?			
	Answer dependant on 2 key parameters:			
Answer is YES for several	1 – rep rate			
materials	2 - beam size compliant with the physics sought			
Irradiation damage is of concern				
Material irradiation studies are still	A1: for rep-rate > 50 Hz + spot > 2 mm RMS			
needed	\rightarrow 4 MW possible (see note below)			
	A2: for rep-rate < 50 Hz + spot < 2mm RMS			
	\rightarrow Not feasible (ONLY moving targets)			
	NOTE: While thermo-mechanical shock may be			
	manageable, removing heat from target at 4 MW			
	might prove to be the challenge.			
	CAN only be validated with experiments			



Operating Solid Targets at 1+ MW

1 MW - 50 Hz Target Operating Temperature Assessment

- Primarily function of power and target geometry - NOT a function of pulse length or rep rate - Can be lowered with more cooling BUT there is saturation in cooling capacity for given target geometry

Target = Iridium

Energy = 25 GeV

150

Time (ms)

100

250

200

4000

3600

3200

2800

2400

1600

1200

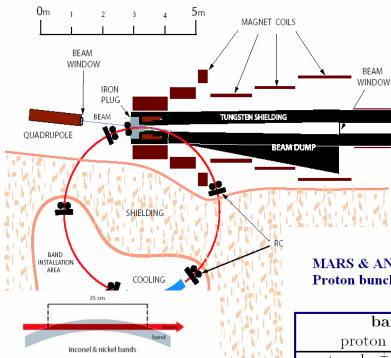
800

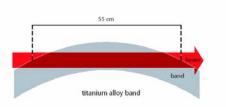
400

0

50

Temp (K)


It is not ONLY the thermomechanical shock due to pulse intensities that prevents targets from operating at high power BUT also the ability to remove heat from target


Even at 1 MW it is tough to keep a high-Z target operating within reasonable temperatures

2 MW is most likely the limit for low-Z stationary target (Carbon composite, graphite) operating at low rep rate and 2mm beam spot

MuTAC Review - March 15-16 2006

Rotating Solid Targets 1 MW?yes 4 MW? maybe

<u>Issues</u>
Beam size
Irradiation damage
Operational challenges

MARS & ANSYS predictions for pion yields, energy depositions and induced stress. Proton bunch charge resulting in 3.2×10^{13} captured protons.

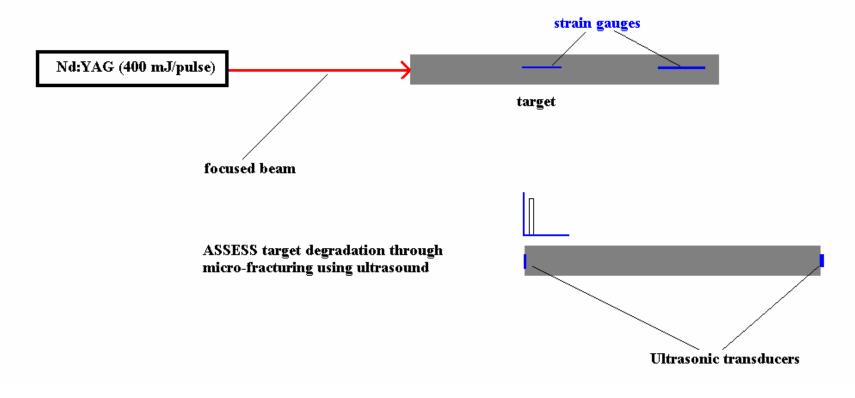
band material	inconel 718		Ti-alloy		nickel	
proton energy $[GeV]$	6	24	6	24	6	24
captured π^+ yield/proton	0.102	0.303	0.080	0.249	0.102	0.302
captured π^- yield/proton	0.105	0.273	0.083	0.224	0.105	0.292
$ppp^{3.2}$ [10 ¹³]	15.5	5.56	19.6	6.78	15.5	5.39
$E^{3.2}_{pulse} \; [kJ]$	149	214	188	260	149	207
$\dot{U_{max}^{3.2}} {\rm [J/g]}$	32.0	31.7	25.6	21.3	32.5	37.4
$\Delta T_{max}^{3.2}$ [°C]	74	73	49	40	71	81
stress, $VM_{max}^{3.2}$ [MPa]	330	360	72	68	330	340
% of fatigue strength	53-69%	58-75%	10-14%	10-13%	N.A.	N.A.

WHAT'S NEXT?

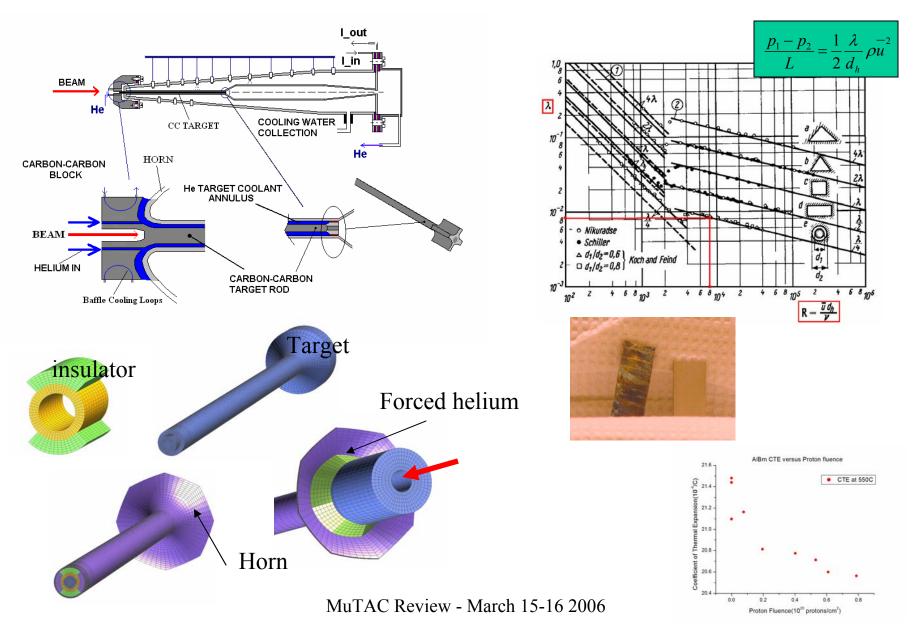
Phase III Target Irradiation **Target Heat Removal Experiments** Series of Post-Irradiation Tests/Analyses **Off beam Shock Tests** Last (but not least) Beam-Target Simulations

PHASE III Target Irradiation

Materials exhibiting interesting properties (Carbon-Carbon, super Invar, AlBeMet, Tantalum, Copper Alloy, Gum Metal) are going back in


GOAL: assess the relation between damage and selfhealing through annealing

Push for damage up to 1 dpa.


Off-beam Target Shock Studies

Use of High-Power Laser (BNL) – to be completed by Summer '06

Generation of stress waves/shock by transient surface heating

Solid Target Concepts – Neutrino Beam

SUMMARY

- **High power targets,** regardless of the physics they will support, are inherently coupled with material R&D (shock and irradiation damage)
- Information to-date is available from low power accelerators and mostly from reactor (neutron irradiation) experience. Extrapolation is not allowed!
- Advancements in material technology (alloys, smart materials, composites) provide hope BUT must be accompanied by R&D for irradiation damage
- Liquid targets (Hg jets) may be the answer to neutrino factory initiative BUT the necessary experiments of the integrated system must be performed. Too many unknowns to be left unexplored
- **Solid target shock experiments** with pulse intensities anticipated in the multi-MW proton driver are necessary
- Simulations of target/beam interaction (solids and liquid jets) that are benchmarked on the various experiments are a MUST. Predicting the mechanics of shock and of magneto-hydrodynamics (while benchmarking simulations to experiments) will allow us to push the envelope to the conditions of the multi-MW drivers