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What do we need materials to possess to get us to multi-
MW Power Levels?

 low elasticity modulus (limit =» Stress = EaAT/1-2v)
* low thermal expansion

 high heat capacity

* good diffusivity to move heat away from hot spots

* high strength

* resilience to shock/fracture strength

* resilience to 1rradiation damage

That’s All !
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The Fundamental Problem

24 GeV Protons on Copper Target
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Tmm RMS Proton Beam
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c~EaAT/(1-2v)-RF

RF = Tsollllcl-’"Tlmlse (lf Tsound < TIJulse )

RF=1.0 (lf Tsound = Tpulse )

heated target spot

Tsound - d\v~

Parameters Affecting Shock Level in Solid Target

V, = sound velocity in material

-Heat capacity (controlling temperature spike)

- Speed of sound in the material

NOTE: If pulse is too short NO reduction in peak
-pulse length stress can be realized since heated zone does not
- coeff. of thermal expansion have time to relax during deposition

-Young's modulus

NuMu Collaboration - March 2006



How do these parameters control limits?

Change in hydrostatic pressure 4P is related to the energy density change AE
through the Gruneisen equation of state

AP=Tp AE,

I' is the Gruneisen parameter related to material thermo-elastic properties such as:
Young’s Modulus E
Poisson’s ratio v
density p
thermal expansion o,
constant volume specific heat c,.

I'=[E/1-2v)] a/(p c,)
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* Look for new alloys, composites, “smart” materials
(low to high Z)

 Irradiation damage of these non-traditional materials

» Establish 4 MW-target feasibility by pushing the
limits through state-of-art simulations (simulations
based on physical models benchmarked on
increasingly available experimental data)
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Several “smart” materials or new composites may be able to meet some of
the desired requirements:

- new graphite grades
- customized carbon-carbon composites
- Super-alloys (gum metal, albemet, super-invar, etc.)

While calculations based on non-irradiated material properties
may show that it is possible to achieve 2 or even 4 MW, irradiation

effects may completely change the outlook of a material candidate

ONLY way is to test the material to conditions similar to those expected
during its life time as target
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O.ZOW

Bunch length effect on target response
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* Beam on targets (E951)
e Maternal 1rradiation

e New activities

— 1rradiation studies/beam on targets

— Laser-based shock studies

* Simulations and benchmarking

— LS-DYNA (highly non-linear simulations which reflect
on the 4-MW conditions)
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CC Shock Response (BNL E951)
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WHY Carbon-Carbon and not graphite?
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Irradiation has a profound effect on thermal conductivity/diffusivity 240 oiidﬁu .
i ® Unirradiated ]
CC composite at least allows for fiber customization and thus 200~ 40.02dpa, 200C

significant improvement of conductivity. *0.25dpa, 200C -
180 = Cx-2002U -
@ Unirradiated

4 0.01 dpa, 200C

120 #0.82dpa, 400C

NOTE that assessment of irradiation effects on conductivity of CC
composite yet to be completed
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Thermal conductivity of neutron-irradiated graphites.

NuMu Collaboration - March 2006



Expansion dL(im)
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Coef. Thermal Expansion, 10-6/K

N W k= o O

—

Super Invar: Serious candidate?

Expansions of Super-Invar
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Ni-plated Al
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1 MW ? 4 MW ?
Answer dependant on 2 key parameters:
Answer 1s YES for several 1 —rep rate
materials 2 - beam size compliant with the physics sought

Irradiation damage 1s of concern

Material irradiation studies are still | Al: for rep-rate > 50 Hz + spot > 2mm RMS
needed = 4 MW possible (see note below)

A2: for rep-rate < 50 Hz + spot < 2mm RMS
=>» Not feasible (ONLY moving targets)

NOTE: While thermo-mechanical shock may be
manageable, removing heat from target at 4 MW
might prove to be the challenge.

CAN only be validated with experiments
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It 1s not ONLY the thermo-mechanical shock due to pulse
intensities that prevents targets from operating at high power BUT
also the ability to remove heat from target

Even at | MW it is tough to keep a high-Z target operating within
reasonable temperatures

2 MW 1s most likely the limit for low-Z stationary target (Carbon
composite, graphite) operating at low rep rate and 2mm beam spot
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1 MW - 50 Hz Target Operating Temperature Assessment

- Primarily function of power and target geometry
- NOT a function of pulse length or rep rate
- Can be lowered with more cooling BUT there is saturation in cooling capacity for given target geometry
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“Moving” Solid Targets

A number of scenarios have been studied

1 MW ? 4 MW ?

YES LIKELY

Issues

Beam size
Irradiation damage
Operational challenges
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Rotating Band Concept 5.,.;((
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TUNNEL MARS & ANSYS predictions for pion yields, energy depositions and induced stress.
Proton bunch charge resulting in 3.2 x 10" captured protons.

QUADRUPOLE

band material inconel 718 Ti-alloy nickel

proton energy [GeV] 6 24 6 24 6 24
captured 77 yield/proton | 0.102 0.303 0.080 0.249 | 0.102 0.302
captured 7~ vield/proton | 0.105 0.273 0.083 0.224 | 0.105 0.292
ppp>2 [1013] 15.5 5.56 19.6 6.78 155 5.39

Epug\t [kJ] 149 214 188 260 149 207

U322 [1/¢ 32.0 31.7 25.6 21.3 325 374

AT3:2 [°C] 74 73 49 40 71 81

stress, VM3:2  [MPal 330 360 72 68 330 340

% of fa.tlgue strength | 53-69% 58-75% | 10-14% 10-13% | N.A. N.A.
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A “Liquefied” Particle Bed Concept
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WHAT IS IT ?
» A loosely packed particle bed wetted by a liquid metal (i.e. Hg)

« particle/liquid interaction =» “attenuate” the shock induced + provide yield

« Randomly packed particle beds have been considered in the past (BNL, CERN)

- pebble bed reactor
— neutron sources
— SNS collimators/absorbers

— Studies of poro-elasticity in granular media
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Concept for an Edge Cooled Target for Use at the BNL-AGS

H.Ludewig, N. Simos, J. Hastings, P. Montanez, and M. Todosow.

Wacuum Gap

De-coupled Neutron
EBeatmn Tube




TUNGSTEN PARTICLE BED SPALLATION TARGET
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Figure shows
analytical results of a
pulse propagating in
the medium with two
(2) velocities =»
leading to sharing of
energy

Pe™

»
— R ..
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Phase 111 Target Irradiation

Series of Post-lrradiation Tests/Analyses
Off beam Shock Tests

Last (but not least) Beam-Target Simulations
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Materials exhibiting interesting properties

are going back in

GOAL.: assess the relation between damage and
self-healing through annealing

Push for damaage up to 1 dpa.
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Off-beam Target Shock Studies
Use of High-Power Laser (BNL) —to be completed by Summer ‘06

Generation of stress waves/shock by transient surface heating

strain gauges

Nd:YAG (400 mJ/pulse)

target

focused beam

[

ASSESS target degradation through
micro-fracturing using ultrasound

TUlirasonic transducers
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Solid Target Concepts — Neutrino Beam
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Target Heat Transfer Experiments
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SUMMARY

High power targets, regardless of the physics they will support, are
Inherently coupled with material R&D (shock and irradiation damage)

Information to-date is available from low power accelerators and
mostly from reactor (neutron irradiation) experience. Extrapolation is
not allowed!

Advancements in material technology (alloys, smart materials,
composites) provide hope BUT must be accompanied by R&D for
Irradiation damage

Liquid targets (Hg jets) may be the answer to neutrino factory initiative
BUT the necessary experiments of the integrated system must be
performed. Too many unknowns to be left unexplored
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SUMMARY (cont.)

 Solid target shock experiments with pulse intensities
anticipated in the multi-MW proton driver are necessary

« Simulations of target/beam interaction (solids and liquid
jets) that are benchmarked on the various experiments are
a MUST. Predicting the mechanics of shock and of
magneto-hydrodynamics (while benchmarking simulations
to experiments) will allow us to push the envelope to the
conditions of the multi-MW drivers
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