

MATERIAL IRRADIATION STUDIES FOR HIGH-INTENSITY PROTON BEAM TARGETS

BNL AGS/BLIP/Hot Cell FACILITY

Nicholas Simos, BNL

H. Kirk, P. Thieberger, H. Ludewig, P. Trung (BNL)

K. McDonald, Princeton U.

J. Sheppard, SLAC

K. Yoshimura, KEK

- ASSESS the effects of proton irradiation on material properties that are key in the design and operation of high power targets
- •Is Carbon-Carbon the alternative to Graphite?
- How about these new "smart" materials? (Gum metal, AlBemet, etc.)

PAST STUDIES: Super-Invar Irradiation What did we learn ?

Some Alloys Change Drastically and some Don't

PHASE-II TARGET MATERIAL STUDY

Material Matrix

Carbon-Carbon composite

GRAPHITE (IG-43)

Titanium Ti-6Al-4V alloy

Toyota "Gum Metal".

VASCOMAX

<u>AlBeMet</u>

Nickel-Plated Aluminum

TESTS (on-going + upcoming)

Mechanical property changes

Ductility loss Strength loss/gain Fracture toughness **Physical property changes** CTE Diffusivity Heat capacity

Shock resilience

WHY DO WE WANT TO DO THESE TESTS?

ATJ Graphite vs. Carbon-Carbon Composite

E951 assessment: CC is the way to goif we care to absorb shock.Do things hold true after irradiation?

Gum Metal (Toyota Ti alloy)

AlBeMet[®] Property Comparison

Property	Beryllium S200F/AMS7906	AlBeMet AM16H/AMS7911	E-Material E-60	Magnesium AZ80A T6	Aluminum 6061 T6	Stainless Steel 304	Copper H04	Titanium Grade 4	
Density Ibs/cuin (g/cc)	0.067 (1.86)	0.076 (2.10)	0.091 (2.51)	0.066 (1.80)	0.098 (2.70)	0.29 (8.0)	0.32 (8.9)	0.163 (4.5)	
Modulus MSI (Gpa)	44 (303)	28 (193)	48 (331)	6.5 (45)	10 (69)	30 (205)	16.7 (115)	15.2 (105)	
UTS KSI (Gpa)	47 (324)	38 (262)	39.3 (273)	49 (340)	46 (310)	76 (616)	46 (310)	95.7 (660)	
YS KSI (Gpa)	35 (241)	28 (193)	N/A	36 (250)	40 (276)	30 (205)	40 (276)	85.6 (590)	
Elongation %	2	2	< .06	6	12	40	20	20	
Fatigue Strength KSI (Gpa)	37.9 (261)	14 (97)	N/A	14.5 (100)	14 (96)	N/A	N/A	N/A	
Thermal Conductivity btu/hr/ft/F (W/m-K)	125 (216)	121 (210)	121 (210)	44 (76)	104 (180)	9.4 (16)	226 (391)	9.75 (16.9)	
Heat Capacity btu/lb-F (J/g-C)	.46 (1.96)	.373 (1.66)	.310 (1.26)	.261 (1.06)	.214 (.896)	.12 (.6)	.092 (.385)	.129 (.54)	
CTE ppm/F (ppm/C)	6.3 (11.3)	7.7 (13.9)	3.4 (6.1)	14.4 (26)	13 (24)	9.6 (17.3)	9.4 (17)	4.8 (8.6)	
Electrical Resistivity ohm-cm	4.2 E-06	3.5 E-06	N/A	14.6 E-06	4 E-06	72 E-06	1.71 E-06	60 E-06	

200 MeV Protons

Establishing Irradiation Temperature Thermal Sensitive Paint Technique

100

Results of autoradiographic beam profile measurements for the 2004 BLIP irradiation, using the "downstream" nickel foil.

Horizontal position looking at the surface where the beam enters the foil	Vertical position	Horizontal rms width (σ)	Vertical rms width (σ)		
$2.9 \pm 0.5 \text{ mm}$ left of center	4.5 ± 0.5 mm below center	$8.1 \pm 0.3 \text{ mm}$	8.4 ± 0.3 mm		

Irradiation Damage Analysis (dpa) showed that this cell associated with the tensile specimenn experiences most damage

266	267	268	269	270	271	272	273	274	275	276	277	278
253	254	255	256	257	258	259	260	261	262	263	264	265
240	241	242	243	244	245	246	247	248	249	250	251	252
227	228	229	230	231	232	233	234	235	236	237	238	239
214	215	216	217	218	219	220	221	222	223	224	225	226
201	202	203	204	205	206	207	208	209	210	211	212	213

VASCOMAX SAMPLE ACTIVATION

CTEs: 7.52 mCi - 151.2 mCi Tensile: 5.59 mCi - 42.6 mCi

VASCOMAX SAMPLE dpa estimates

Cell 133:

from neutrons : 0.011336 dpa from protons: 0.222335 dpa

Cell 233:

from neutrons: 0.013827 dpa from protons: 0.2214 dpa

Cell 220:

from neutrons: 0.0157 dpa from protons: 0.24377 dpa

Irradiation Damage in Gum Metal

Highest dpa values estimated also near the bottom half of the tensile specimen "gauge" as in Vascomax.

 $GUM (dpa)_max = 0.242 (protons) + 0.0132 (neutrons)$

For the rest of the materials appropriate dpa cross sections are being sought to be introduced into the model.

Post-Irradiation Study at BNL Hot Cell

Dilatometer – Mechanical Tester

Vascomax Stress-Strain

Temp (C)

Beryllium Stress-Strain

Temp (C)

Ti-6AI-4V Stress Strain Relationship

Titanium Alloy (Ti-6Al-4v) Stress-Strain Relationship

Gum Metal Stress_Strain

GUM Metal

Strengthens but clearly looses the "super-ductility property

The type of gum metal being tested (between annealed and 90% cold worked) Appears to hold its CTE characteristics

Effects of Irradiation on Gum Thermal Expansion

Unirradiated Gum Metal Stress-Strain

IG-43 Graphite - Thermal Expansion (%)

Temp (deg. C)

Thermal Expansion in CC Carbon (90-deg fiber orientation)

Carbon-Carbon Composite Thermal Expansion

Temp (C)

REMAINING "TO DO" LIST

- Graphite and Carbon-Carbon to be tested to cycles up to 1100 C
 - in vacuum
 - with forced helium
 - Dilatometer will be upgraded to allow these two runs

• Thermal diffusivity (or conductivity) will be measured using the dilatometer setup with an implemented modification that allows for diffusivity measurements in transient mode

• Complete the examination of the nickel-plating on aluminum (NUMI horn material) – Preliminary (visual) examination shows serious surface changes

• Assess damage due defect generation/growth on the irradiated specimens using ultrasonic techniques (more of an issue in graphite & CC) – System is available and ready. Tests to be done after diffusivity measurements

• Material resilience to shock: Use of a high power – focused laser beam to excite the materials of the matrix – Lab is set up and laser system is up and ready. Need to borrow fiber-optic recording system from ORNL