

Superbeam Horn-Target Integration

N. Simos, BNL EUROnu-IDS Target Meeting

December 15-18, 2008

Superbeam Target-Horn Concept – BNL Study

Superbeam Target-Horn Concept – BNL Study

The 1 MW BNL Superbeam Study

Table 6.1: Horn/Target design parameters.					
Proton Beam Energy	28 GeV				
Protons per Pulse	$8.9 x 10^{13}$				
Average Beam Current	35.7 μA				
Repetition Rate	2.5 Hz				
Pulse Length	$2.58 \ \mu \text{sec}$				
Number of Bunches	23				
Number Protons per Bunch	$3.87 \mathrm{x} 10^{12}$				
AGS Circumference	807.1 m				
Bunch Length	40 ns				
Bunch Spacing	60 ns				
Normalized Emittance-X	100 π mm-mrad				
Normalized Emittance-Y	100 π mm-mrad				
Longitudinal Emittance	5.0 eV-sec				
Target Material	carbon-carbon composite				
Target Diameter	1.2 cm				
Target Length	80 cm				
Horn Small Radius	9 mm				
Beam Size (Radius) on Target	2 mm (rms)				
Horn Smallest Radius	6 mm				
Horn Large Radius	61 mm				
Horn Inner Conductor Thickness	2.5 mm				
Horn Minimum Thickness	1 mm				
Horn Length	217 cm				
Horn Peak Current	250 kA				
Current Repetition Rate	2.5 Hz				
Power Supply Wave Form	Sinusoidal, Base Width 1.20 ms				

ESTIMATES OF HORN inner Conductor Heating

Joule Heat (conservative estimate) = 1.335 kW (for 2.5 Hz !!)

Heat from secondary particles = 10.3 kW

Radiation from target = 0.885 kW

TOTAL = 12.52 kW.

The removal of the generated heat using only the forced helium in the annulus, that is also cooling the target, high helium velocities will be required. Helium with inlet Temp of 144 K and with the surface temperature of the horn maintained at ~ 90 C, the required heat transfer film coefficient is 1624 W/m2-C requiring He velocities >150 m/s

ISSUES

• Target

- 4 MW and solid target (?)

Horn

- How will any horn perform at 4 MW?
 - Radiation damage and electrical property degradation
 - Integration with target and heat removal
 - Heat removal from the inner conductor (water deluge to cool it)

Parameter Space

Protons per pulse required for 4 MW

$\overline{P}_{arc}(w) = E[eV] \times N \times e \times f_{rep}[Hz]$

	10 Hz	25 Hz	50 Hz	
10 GeV	$250 imes 10^{12}$	$100 imes 10^{12}$	$50 imes 10^{12}$	
20 GeV	$125 imes 10^{12}$	$50 imes 10^{12}$	$25 imes 10^{12}$	

Maximum Energy Density (GeV/g per proton) COPPER 2.0 1.0 Po(GeV/c) 0.5 0.2 0. 0.1 0.2 0.3 0.4 0.5 0.6 0 σ(mm)

7

Solid Targets – How far we think they can go?

1 MW ?	4 MW ?
	Answer dependant on 2 key parameters:
Answer is YES for several materials	1 – rep rate
Irradiation domago is of primary	2 - beam size compliant with the physics sought
Irradiation damage is of primary concern	A1: for rep-rate > 50 Hz + spot > 2mm RMS → 4 MW possible (see note below)
Material irradiation R&D pushing ever closer to anticipated atomic displacements while considering new alloys is needed	 A2: for rep-rate < 50 Hz + spot < 2mm RMS → Not feasible (ONLY moving targets)
	NOTE: While thermo-mechanical shock may be manageable, removing heat from target at 4 MW might prove to be the challenge. CAN only be validated with experiments

Irradiation Effects on CRITICAL Target Properties

• Graphite vs. Carbon-Carbon Composite (it may be that CC is a viable alternative to graphite !!!! NOT SO FAST)

Irradiation & Oxidizing Environment Effects on Horn Conductor

Irradiation & Oxidizing Environment Effects on Horn Conductor

Radiation-induced swelling of various aluminum alloys

The AlBeMet Choice

AlBeMet[®] Property Comparison

Property	Beryllium S200F/AMS7906	AlBeMet AM16H/AMS7911	E-Material E-60	Magnesium AZ80A T6	Aluminum 6061 T6	Stainless Steel 304	Copper H04	Titanium Grade 4
Density Ibs/cuin (g/cc)	0.067 (1.85)	0.076 (2.10)	0.091 (2.61)	0.065 (1.80)	0.098 (2.70)	0.29 (8.0)	0.32 (8.9)	0.163 (4.5)
Modulus MSI (Gpa)	44 (303)	28 (193)	48 (331)	6.5 (45)	10 (69)	30 (205)	16.7 (115)	15.2 (105)
UTS KSI (Gpa)	47 (324)	38 (262)	39.3 (273)	49 (340)	46 (310)	75 (515)	45 (310)	95.7 (660)
YS KSI (Gpa)	35 (241)	28 (193)	NA	36 (260)	40 (276)	30 (206)	40 (276)	85.6 (590)
Elongation %	2	2	< .05	6	12	40	20	20
Fatigue Strength KSI (Gpa)	37.9 (261)	14 (97)	NA	14.5 (100)	14 (95)	N/A	N/A	N/A
Thermal Conductivity btu/hr/ft/F (W/m-K)	125 (216)	121 (210)	121 (210)	44 (76)	104 (180)	9.4 (16)	226 (391)	9.75 (16.9)
Heat Capacity btu/Ib-F (J/g-C)	.46 (1.96)	.373 (1.56)	.310 (1.26)	.261 (1.06)	.214 (.896)	.12 (.5)	.092 (.385)	.129 (.64)
CTE ppm/F (ppm/C)	6.3 (11.3)	7.7 (13.9)	3.4 (6.1)	14.4 (26)	13 (24)	9.6 (17.3)	9.4 (17)	4.8 (8.6)
Electrical Resistivity ohm-cm	4.2 E-06	3.5 E-06	N/A	14.6 E-06	4 E-06	72 E-06	1.71 E-06	60 E-06

The AlBeMet Choice

Target Shock Studies

Radiation damage to target & horn

Solid Targets

'ORY

Target Shock Studies

Beam-induced shock simulation

Beam-induced shock simulation

Pulse Structure

trino Fac

-500 -

Bunch period in BASELINE pulse structure

(12 bunches in 4.2 microsecs)

Time [ns]

Why is Pulse Structure Important?

Gaussian and equivalent uniform beam distribution for same number of particles

Target	25 GeV	16 GeV	8 GeV		
	Energy Deposition (Joules/gram)				
Copper	376.6	351.4	234		

BROOKHAVEN SCIENCE ASSOCIATES

Threshold ~ 10^21 p/cm2

24

Accelerator Experience:

TRIUMF Target; LANL Target; PSI Target

running through the plates develop at proton fluences above about $2 \times 10^{25} \text{ P/m}^2$. Plates from targets irradiated to about 0.5 of this fluence show extensive delamination, but lock the macroscopic cracks across the a-b planes. These results indicate that pyrolytic graphite is very susceptible to delamination, as would be expected from the low tensile strength in the c direction.

= 10^21 p/cm2

Water-cooled/Edge-cooled TRIUMF target

3-D CC (~ 0.2 dpa) conductivity reduces by a factor of 3.2

2-D CC (~0.2 dpa) measured under irradiated conditions (to be compared with company data)

Graphite (~0.2 dpa) conductivity reduces by a factor of 6

W (1+ dpa)	→	reduced by factor of ~4		
Ta (1+ dpa)	→	~ 40% reduction		
Ti-6Al-4V (~ 1dpa)	→	~ 10% reduction		

super-Invar

Irradiated	400°C	550°C	650°C	900°C
High-density dislocations		Formation of SFT	Dislocation loop	Formation of He bubble
0			0	○ 50nm

"Gum" metal

Gum metal

29

U.S. DEPARTMENT OF ENERGY

Radiation Damage Studies – High-Z Materials

30

0.3

U.S. DEPARTMENT OF ENERGY

BROOKHAVEN SCIENCE ASSOCIATES

Urgent R&D

Target material irradiations to 4-MW level fluences

Study of Albemet as Horn and/or Target Material

Irradiation damage of insulators

Heat transfer tests for multi-MW demand

