

Superbeam Horn-Target Integration

N. Simos, BNL EUROnu-IDS Target Meeting

December 15-18, 2008

Superbeam Target-Horn Concept – BNL Study

Superbeam Target-Horn Concept – BNL Study

The 1 MW BNL Superbeam Study

ESTIMATES OF HORN inner Conductor Heating

Joule Heat (conservative estimate) = 1.335 kW (for 2.5 Hz !!)

Heat from secondary particles = 10.3 kW

Radiation from target = 0.885 kW

 $TOTAI = 12.52$ kW.

The removal of the generated heat using only the forced helium in the annulus, that is also cooling the target, high helium velocities will be required. Helium with inlet Temp of 144 K and with the surface temperature of the horn maintained at \sim 90 C, the required heat transfer film **coefficient is 1624 W/m2-C requiring He velocities >150 m/s**

ISSUES

• **Target**

4 MW and solid target (?)

• **Horn**

- How will any horn perform at 4 MW?
	- -Radiation damage and electrical property degradation
	- -Integration with target and heat removal
	- - Heat removal from the inner conductor (water deluge to cool it)

Parameter Space

Protons per pulse required for 4 MW

$\overline{P}_{\text{arc}}(W) = E[eV] \times N \times e \times f_{\text{res}}[Hz]$

Maximum Energy Density (GeV/g per proton) COPPER 2.0 $1.0\,$ P_0 (GeV/c) 0.5 0.2 $\bf{0}$ 0.1 0.2 0.3 $\bf 0.4$ $0.5\,$ 0.6 $\bf{0}$ σ (mm)

Office of Science **U.S. DEPARTMENT OF ENERGY**

Solid Targets – How far we think they can go?

Irradiation Effects on CRITICAL Target Properties

• **Graphite vs. Carbon-Carbon Composite (it may be that CC is a viable** alternative to graphite !!!! NOT SO FAST)

Irradiation & Oxidizing Environment Effects on Horn Conductor

Irradiation & Oxidizing Environment Effects on Horn Conductor

Radiation-induced swelling of various aluminum alloys

The AlBeMet Choice

[AlBeMet[®] Property Comparison]

The AlBeMet Choice

• **Target Shock Studies**

• **Radiation damage to target & horn**

Solid Targets

Target Shock Studies

Beam-induced shock simulation

Beam-induced shock simulation

Pulse Structure

800

900

1000

trino Fact

 $\pmb{0}$

100

200

Bunch period in BASELINE pulse structure

(12 bunches in 4.2 microsecs)

300

400

500

600

Time [ns]

 $700\,$

Why is Pulse Structure Important?

Gaussian and equivalent uniform beam distribution for same number of particles

BROOKHAVEN SCIENCE ASSOCIATES

Threshold \sim 10 $^{\circ}$ 21 p/cm2

24

Accelerator Experience:

TRIUMF Target; LANL Target; PSI Target

running through the plates develop at proton fluences above about $2x10^{25}$ P/m². Plates from targets irradiated to about (0.5) of this fluence show extensive de-
lamination, but lock the macroscopic cracks across the a-b planes. These results indicate that pyrolytic graphite is very susceptible to delamination, as would low tensile strength in the c be expected from the direction.

 $= 10^{21}$ p/cm2

Water-cooled/Edge-cooled TRIUMF target

3-D CC (~ 0.2 dpa) conductivity reduces by a factor of 3.2

2-D CC (~0.2 dpa) measured under irradiated conditions (to be compared with company data)

Graphite (~0.2 dpa) conductivity reduces by a factor of 6

super-Invar

"Gum" metal

 ω

Gum metal

U.S. DEPARTMENT OF ENERGY

29

BROOKHAVEN SCIENCE ASSOCIATES

Radiation Damage Studies – High-Z Materials

 0.3

U.S. DEPARTMENT OF ENERGY

Thermal Expansion of Unirradiated Tungsten

BROOKHAVEN SCIENCE ASSOCIATES

30

Urgent R&D

Target material irradiations to 4-MW level fluences

Study of Albemet as Horn and/or Target Material

Irradiation damage of insulators

Heat transfer tests for multi-MW demand

