X-ray Diffraction studies of irradiated Materials at BNL Experimental Facilities - N. Simos (Oct. 9, 2014)

MATERIALS:

Graphite polymorphs, h-BN, Be, AlBeMet, Tungsten, Molybdenum, Glidcop, Mo-Gr, Cu-CD, carbon fiber composites, superalloys (Ti6Al4V, s-INVAR and gum metal) and metal-metal interfaces

Irradiations:

118-200 MeV Protons at BNL BLIPFast Neutrons at BNL BLIP28 MeV Protons at TandemNeutrons at Tandem (low temperature)

X-ray Studies (completed)

(a) using monochromatic high energy X-rays(B) high energy x-rays EDXRD (Phase I & Phase II)

MICROSCOPY (at CFN): SEM/EDS, annealing, DSC and TG/DTA

Spallation Neutron Irradiation at BLIP

28 MeV Proton Irradiation at Tandem

Localized Damage Followed by EDXRD Studies

FBE Fixture for NSLS X17B1 Experiment FDE Fixture for NSLS X17B1 Experiment FDE Fixture for NSLS X17B1 Experiment

FPB of 1mm-thick Poco Graphite Tensile Test Specimen

Multi-functional stage capable of handling

Real size irradiated specimens, under vacuum and four point bending state of stress and eventually Heating/annealing via a portable, collimated laser beam Tensile stress-strain test

From concept to a versatile experimental stage at X1781 beamline at NSLS

Plastic Strain

von Mises Stress

-4.533e+01 -4.857e+01

Graphite

Important to know what occurs during irradiation and post-irradiation annealing (mobilization of interstitials/vacancies)

This is what we observe in BULK What happens at the crystal level? How is E is affected or is strain in crystal related to bulk?

Interstitial defects will cause crystallite **growth** perpendicular to the layer planes (c-axis direction)

Coalescence of vacancies will cause a **shrinkage** parallel to the layer planes (a-axis direction)

Graphite Various grades, including Carbon fiber composites under different irradiations

This 002 peak also broadens asymmetrically, with a bias towards smaller angles indicating an increase in average interlayer distance. The (002) diffraction spot also broadens in single crystal images, suggesting a range of values for the interlayer distance

Goal is to correlate post-irradiation annealing observed macroscopically with shifts observed in XRD

Global volumetric changes vs. crystallevel changes

Activation Energy

Interstitial defects will cause crystallite **growth** perpendicular to the layer planes (c-axis direction)

Coalescence of vacancies will cause a **shrinkage** parallel to the layer planes (aaxis direction)