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BACKGROUND

*All studies suggest that, to push frontier in proton drivers to an order higher
than the existing ones, one must maximize the yield at the source

*Proton drivers with beam power up to 4 MW could become reality

*Challenge in finding suitable target material/configurations that will
withstand intense heating, shock waves and radiation damage

*Experience suggests that without R&D surprises are not far behind
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Neutrino SuperBeam, an example where R&D is a MUST
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* Find best possible materials that can be used as
accelerator targets under extreme conditions

 ONLY experimentation with such materials can
ensure longevity

— Irradiation effects on physical & mechanical properties
» Materials are known to lose conductivity in excess of 90%o !!!

— Resistance to shock

« Validate prediction models against measurements to
gain confidence in predicting material response
and/or failure at anticipated extreme conditions

e USE experimental results to benchmark energy
depositions predicted by tMonte Carlo codes
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TARGET CONCEPTS UNDER CONSIDERATION

Solid Targets for Muon Collider/Neutrino Factory
*Graphite, CC composite

sTarget-like (beam windows) for Muon Collider/Neutrino
Factory

*Host of materials that expect to see same beam
(Inconel, Havar, Ti_alloy, etc)

Solid Targets for the Neutrino Superbeam
*CC composite, Graphite, AlBeMet, Gum Metal

*Targets for Pulsed Neutron Sources (iridium)
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—— C-C composite
—— ATJ Graphite
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Coef. Thermal Expansion, 10-6/K
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Dilatometer Measurements
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Displacements per Atom

Activation Measurements
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MPa

Verification of System Stability on Stalnless Steel Samples
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Solid Target Option: Super-Invar Irradiation Study
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Super-Invar Irradiation Study — Temperature Effects

—non treated Invar

—Temp (300 C)
——Temp (500 C)
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LESSON LEARNED FROM PHASE |

Attractive properties of some wonder materials may be
thrown out the window very quickly once on line

Do not give up ... There are more “wonder’” materials out
there.

And that bringsusto PHASE Il .............c.oi il
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PHASE Il -TARGET MATERIAL R&D

Carbon-Carbon Composite (BNL)
Toyota “Gum Metal” (KEK)

Graphite (1G-43) (KEK)

AlBeMet (BNL)

Beryllium (BNL)

Ti Alloy (6AIl-4V) (SLAC)

Vascomax (BNL)

Nickel-Plated Alum. (BNL-FNAL-KEK)
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WHAT IS OF INTEREST TO US
IN POST-IRRADIATION PHASE

Resilience in terms of strength/shock absorption

° CTE evaluation

. Stress-strain

. Fatigue

. Fracture Toughness and crack development/propagation

*Corrosion Resistance

*De-lamination (if a composite such as CC or plated HORN conductor) — Use
of ultrasonic technology to assess changes

sDegradation of conductivity
All of the above can/will be done in Hot Cell.

Other tests are also in the planning for scrutiny of the successful candidates
(laser induced shock and property measurements)
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WHY “GUM” Metal, Vascomax, or AlBeMet ?
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PHASE-1l TARGET MATERIAL STUDY

WHAT’S DIFFERENT FROM PHASE-I?

~ 100 MeV of Proton Beam (200 to 100 MeV)
Challenge of inducing UNIFORM Beam degradation

MORE Material to go in (optimization of dE/dx for range 200 MeV-100 MeV)

OPEN Issue: Study of Fracture Toughness for some materials ?
ORIGINAL THOUGHT was YES
dE/dx budget pushed it to next round
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Tensile and CTE Specimen Design

TENSILE speciinen design for:

* Ti-6Al-4V alloy (32 speciinens)
* Gun Metal (60 specimens)
* AlBeMet (39 specimens)

Total Length = 291min

in




FRONT VIEW

42.8 mm

Spacers

Tensile and CTE Specimen Assembly into the Target Box During Irradiation
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TARGET BOX ASSEMBLY DETAILS







Actual TEST on Estimating Irradiation Temperature
Aluminum Plate
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Activation Measurements

Autoradiography profile

_—

Exposure

9500

8500

7500

5500

5500

4500

3500

X - Profile
Pt
N
f FWHM = 4.0 mm \
i "
7 %
oo
a 2|0 4|0 6‘0 8IU
Pixel # (75 dpi)

100

£
wn
| =
a
E
£
[
a
m
Y- Praofile
10000
o Pt
@ 5000
5
2 7000 If \
a 4 FWHM = 15.1 mm \
5000 ...-‘“’ "~
4000 T T T T
0 20 40 &0 80 100
Pixel # {75 dpi)

NuFact2004, Osaka, Japan




HOT CELL Specimen Analysis
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STATUS OF IRRADIATION EXPERIMENT

IRRADIATION PHASE COMPLETED SUCCESSFULLY
on March 22nd

2-week irradiation of samples on 200 MeV beam with
average current ~ 80 pA

Irradiation exposure expected to induce ~ 0.25 dpa on targets
(sufficient in revealing how materials are affected)

We have been sitting-and-waiting for the specimens to “cool-
down”

Post-lrradiation evaluation begins in September 2004. Set-up

work has begun.
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Summary

Results of recent material studies indicate that selecting target material based on it’s
seemingly attractive properties that appear to be the solution to the daunting task of
surviving the high intensity pulses of high-power accelerators (such as coefficient of
thermal expansion, fracture toughness, strength, etc.) should be preceded by an
assessment of effects that radiation damage can impart on this property.

As many new materials are developed by optimizing key properties that may be of value
to the accelerator community (and possibly to the reactor community) the need for
assessment of radiation damage potential is paramount.

This material study focuses on some of the new materials and hopes to screen them as
possible target candidates. Upon completion of the study those materials that maintain
their properties under modest levels of irradiation (that this study can achieve) will
undergo further irradiation to levels that are equivalent to those expected during their
life expectancy as accelerator targets.
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