

High Power Hg Target Conceptual Design Review

Operating Scenario / Hg Handling / End-of-Test Handling

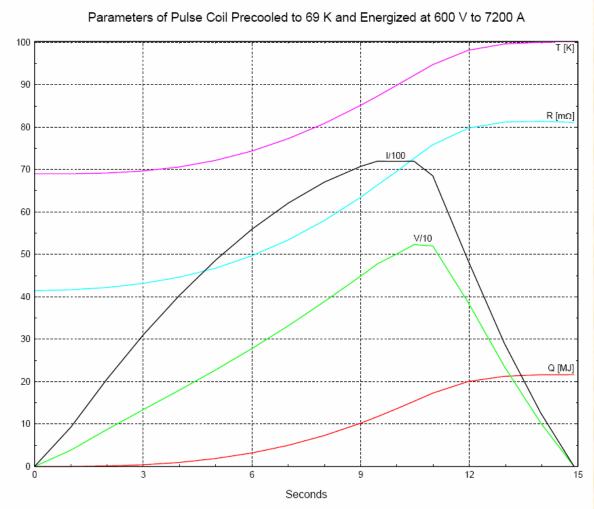
P.T. Spampinato V.B. Graves T.A. Gabriel

Oak Ridge National Laboratory February 7-8, 2005

> OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Preliminary Hg Target System Operation – Full Field (15 Tesla)

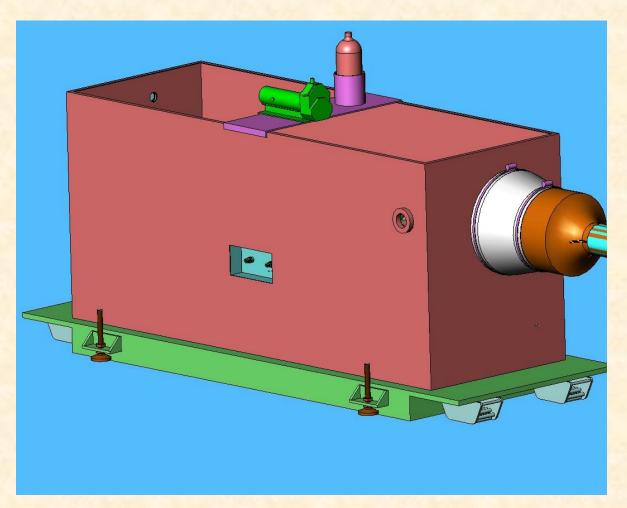
1.77	Solenoid **		77	1.770	
Time	Cryogenics	Power	Target Pump	Proton Beam	Optical
(sec.)		Supply	System	100	Diagnostic
minus 30	Magnet full of	Standby	Fill Hg supply	Call for beam	Off
	LN ₂ @ 80°K		line		
minus 10	Purge LN ₂ with	Standby	Standby	Wait for beam	Standby
	gaseous He				
0 to 9.5	Magnet full of	Start ramp	Ramp Hg to full	Wait for beam	Standby
	He gas	to full	flow		10-01-041-01-0
		current			
8 to 9.0	Magnet full of	Ramping to	Steady state Hg	Wait for beam	Turn on laser
	He gas	full current	jet		lighting
9.5 to	Magnet full of	At full	Steady state Hg	24 GeV, 1 MW	Operate high
10.5	He gas	current	jet	a street a second	speed camera
10.5 to	Magnet full of	Begin de-	Shut down	Standby	Turn off laser
11.0	He gas	energizing	syringe pump	1. 4. 7	light and
					camera
11.0 to	Magnet full of	De-energize	Standby	Standby	Off
15.0	He gas	to zero			
15.0 to	Fill magnet with	Cool down	Refill syringe	Standby	Off
1800.0*	LN ₂ @ 80°K	to ~80°K	cylinder	1000 F	


* Assumes a 30-minute dwell period.

** Solenoid power supply is in "Standby" for zero-field operation.

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Magnet Operating Scenario


Bob Weggel's 10-14 analysis of the LN2 magnet operation

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Plan For Handling Hg

Peristaltic pumping is considered to present the least risk of spillage for installing Hg

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Hg Handling (cont.)

Install and remove Hg with a peristaltic pump

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Hg Handling (cont.)

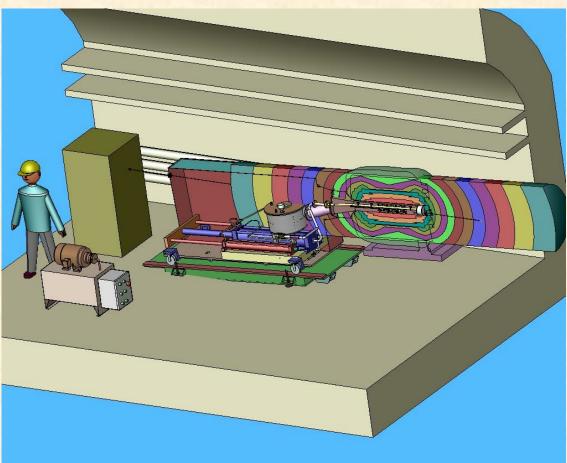
- Use spare Hg from the TTF inventory (new Hg is ~\$600 liter) ... ??
- Ship in 2-liter flasks
- Recover virtually all Hg at the end of tests; return the Hg to ORNL

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Residual Radiation On Solenoid & Target Equipment (H. Kirk MARS Calculation)

- Assume:
 - 200 pulses
 - 16 x 10¹² protons/pulse average
 - 30 days running
- Then the contact radiation on the iron exterior will be:
 - After 1 hr 40 mrad/hr
 - After 1 day 21 mrad/hr
 - After 1 week 13 mrad/hr
 - After 1 mo. 5 mrad/hr
 - After 1 year 1 mrad/hr

Residual Radiation In Hg (H. Kirk)


- Assumptions:
 - 200 pulses
 - 16x10¹² protons/pulse
 - 4 weeks exposure time
 - 24 GeV proton beam
 - 1 cm diameter 30cm long Hg target
- After 1 sec: 2.5 Curies
- After 1 month: 4.3 x 10⁻³ Curies
- After 1 year: 4.9 x 10⁻⁴ Curies

End Of Testing At CERN

- After last pulse, leave equipment in place for 1-2 weeks
- With minimal dismantling in situ, move equipment out of beam line
- Leave in tunnel area as long as CERN permits, up to 1 year ... ??

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

