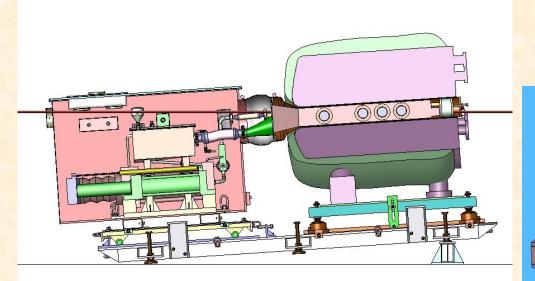
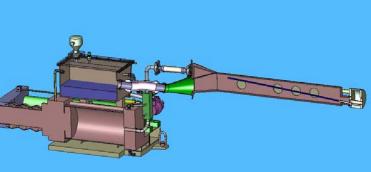


Mercury Intense Target (MERIT) Update

Status of the Target System Design


P.T. Spampinato V.B. Graves T.A. Gabriel

Muon Collaboration Friday Meeting October 28, 2005

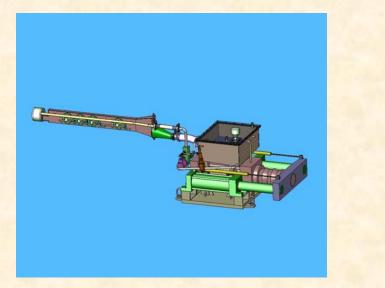

Design Review in July for Syringe; Design Review in Oct. Much Collection for Remainder of Equipment

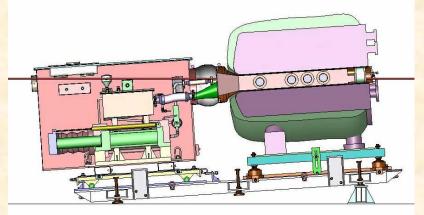
Cutaway view of the target and solenoid

Cutaway view of the target system

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY UT-BATTELLE

Design Approach – Two Design Packages to Expedite Procurement


(1) Syringe Pump

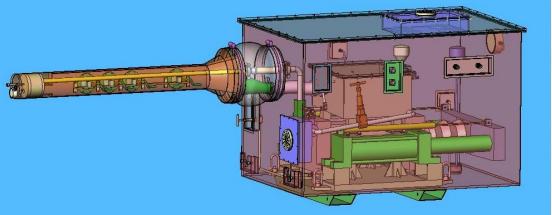

- Syringe pump design replaced the original centrifugal pump due to the high pressure requirement for the system to deliver a 20 m/s jet
- Two hydraulic cylinders drive a Hg cylinder
- <u>Stainless</u> vs carbon steel cylinders
- Procurement underway thru BNL and the vendor chosen (kickoff meeting with Airline Hydraulics Co. today!)

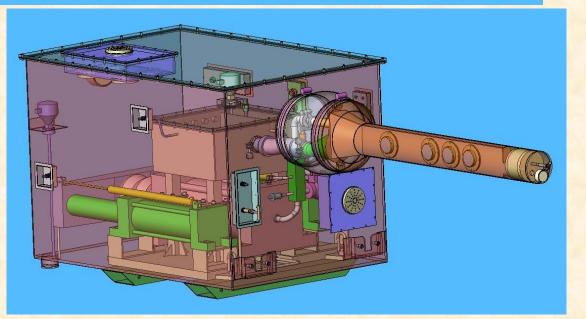
(2) Target Delivery System

- Consists of primary and secondary containments, supports, sump tank, instruments, filtered vent, supply line, laser optic windows, and beam windows
- Procurement in November using BNL procurement process

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Overall Plan


- Pump equipment and target delivery system are designed at ORNL – Funding is provided for design, assembly, and testing
- Procure all hardware thru BNL (except for misc. items)
- Assemble equipment and test the system at ORNL/TTF
 - Characterize operating parameters of the target equipment and the laser diagnostic (pictures of Hg jet)
 - Ship the target to MIT along with auxiliary equipment, and support base structure
- Integrated system tests at MIT (w/solenoid)
 - Characterize operating parameters in the magnetic field environment (pictures of Hg jet in high field)
 - Fit up test of solenoid/target equipment on base support structure
 - Ship back to ORNL (NEW assess sending solenoid to ORNL for subsequent shipping to CERN)
 - Ship system to CERN along with all support equipment
- Beam-on-target tests at CERN
 - Proof-of-principal tests in TT2A tunnel, store, decon., pack, and
 - Ship mildly activated equipment plus Hg back to ORNL



Hg Delivery System

- Capacity 23 liters Hg (~760 lbs)
- Provide 1-cm dia., 20 m/s jet for up to 12 sec
- Secondary containment size 960mm x 1475mm x 960mm
- Estimated weight 2 tons incl. Hg

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Primary Containment

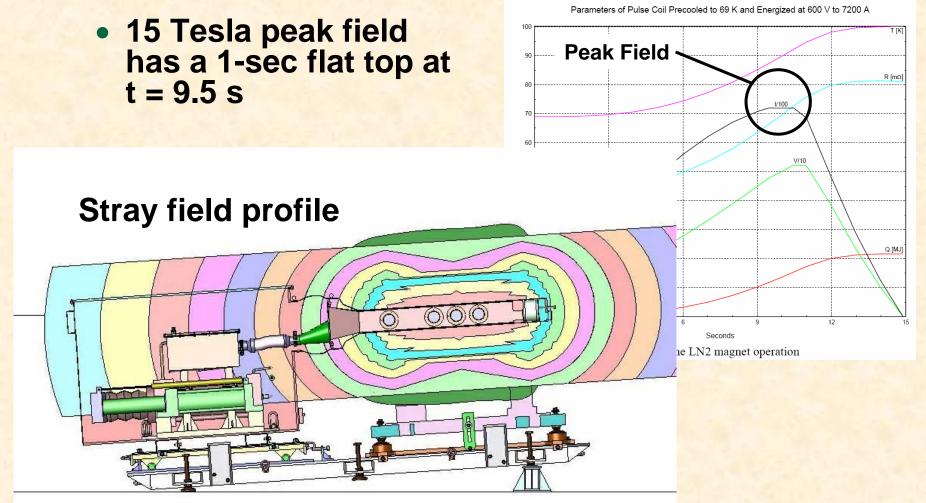
- Hg supply flow path
 - 1-inch Sch.-40 pipe
 - 1-inch flex metal hose w/sanitary fittings
 - 1-inch, 0.065" wall rigid tubing
 - 5-inch diameter plenum
 - 12-mm dia., 1-mm wall rigid tubing

• Hg jet return path

- 1/4-inch plate weldment chamber
- 6-inch to 2-1/2 inch eccentric reducer
- 2-1/2 inch flex metal hose w/sanitary fittings
- sump tank

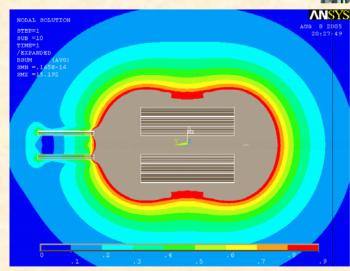
OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

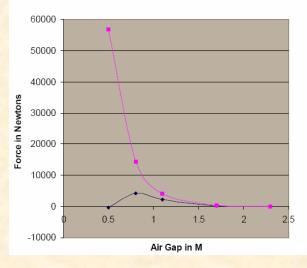
Reqmts and Operating Conditions


Target system must deliver a stable, unconstrained jet of Hg in <u>1-atmosphere</u> of air, into 15 Tesla field (Vacuum Is Under Review)

- 1-cm diameter jet at 20 m/s delivered every 30 minutes
- >1-sec steady state jet during the magnet peak field
- Full-beam interaction length is 30-cm
- 24 GeV, 1 MW proton beam, <20x10¹² ppp
- Beam line is 120-cm (47.2") above the tunnel floor
- Up to 100 pulses for the CERN test, >500 operating cycles for system testing
- The pump equipment operates in a range of 6000 Gauss to 300 Gauss (1 Tesla = 10⁴ Gauss)

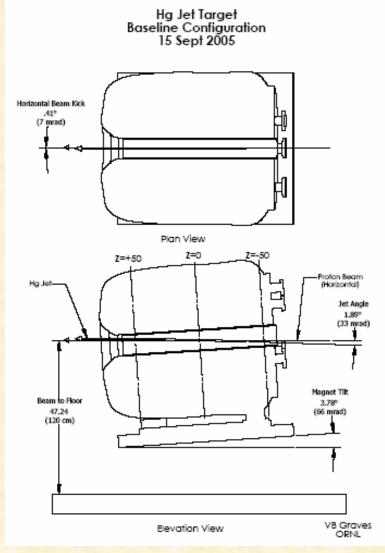
Magnetic Field Profile


OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY


Magnetic Force Analysis

- Peter Titus performed ANSYS analysis of attractive forces between magnet and single iron cylinder
- Force nearly 13000lb
- Further analysis showed force decreases significantly with separation distance > 1m
- Outcome: Syringe system is stainless steel!

Force on 416 Lb Cylinder vs. Air Gap between Magnet and Iron Cylinder

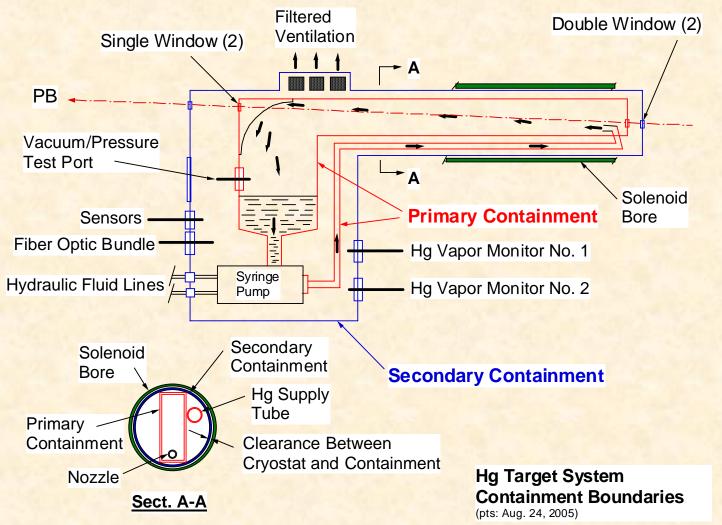


OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

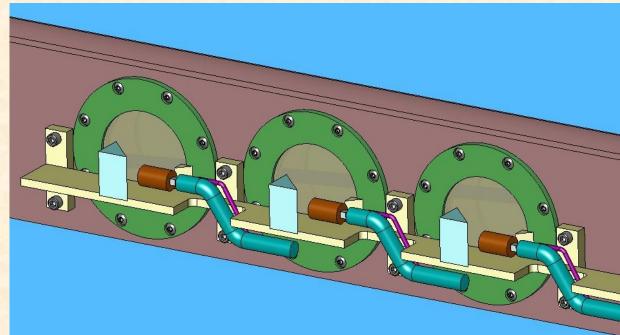
Geometry of the Interaction Region

Muon Collaboration

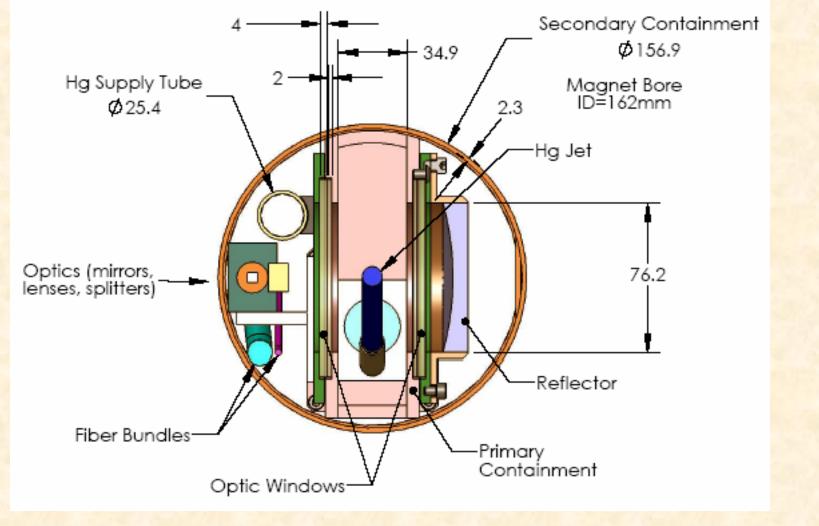
• 0.4° horizontal kick


- Jet to beam is 33 millirad (1.89°); jet to magnetic axis is 100 millirad (5.73°)
- The PB crosses the jet centerline at Z=0, which is also at 15 T in the center of the solenoid

Containment Schematic


OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Optical Components - Target Interfaces Are Defined


- BNL provides splitters, prisms, lenses, bracket, mounting hardware & adjustment mechanisms
- Rad tolerant fused silica cable is being tested at CERN

Z=0 Section Cut

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Hg Loading/Unloading Under Study

- A glove box could be required for unloading Hg at the completion of testing if refilling flasks is not permitted outside of the secondary containment
 - Consider use of snorkel near flasks in lieu of glove box
 - Develop list of activated Hg byproducts and determine effectiveness of filtration

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Preliminary Estimate For Filter Lifetime is Calculated

Saturation Pressure

$$\log P_{sat} = -3105.5/T_{0_{K}} + 4.9294 \quad \text{(bar)}$$

Saturation Concentration

 $C_{sat} = 2.445 P_{sat} / T_{0_{K}} (\text{Kg}_{\text{Hg}}/\text{m}^{3})$

Filter effectiveness tests could be done at ORNL

Ref. Quechsilber und seine Gefahren, Swiss government worker safety report, SBA No. 145, Luzern

- Flow Rate 110 cfm
- Temp. 25 °C
- Filter Effic. 99.0%

• Filter Weight 6 lbs

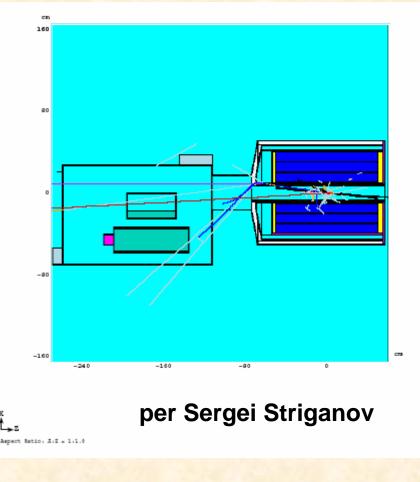
 $(P_{sat}mbar)$

- Filter Satur. 12%
- Filter Life 185 hrs

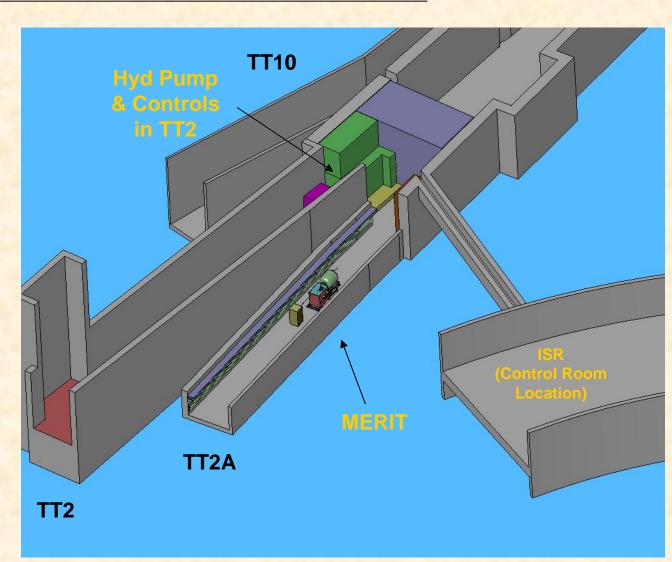
Muon Collaboration Friday Mtg.

Oct. 28, 2005

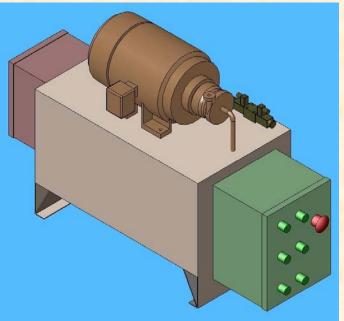
 Does not incl. reduction for humidity


OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY UT-BATTELLE

MARS15 Simulations at FNAL are Underway to Assess Activation of the Target System


 Preliminary results indicate that activation levels are not a problem for electronics, instruments, or materials

CERN Tunnel Layout


OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

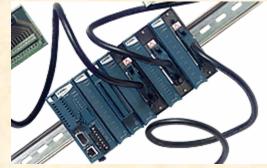
Power Requirements

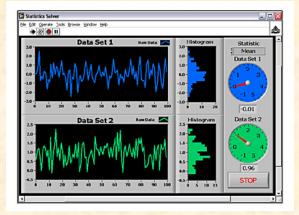
- Hydraulic pump 380/460VAC, 50-60Hz, 60A (power connection at CERN)
- Proportional control valve 24VDC
- Heater foil 120VAC
- Hg vapor monitors 120VAC
- Instruments 24VDC

Instrumentation & Sensors

Controlled Components			
Hydraulic pump	Proportional control valve*	Heater foil	
Analog Sensor Inputs			
Hg discharge pressure	Hg level	Hg sump thermocouple	Secondary containment thermocouple
Cylinder 1 position*	Cylinder 2 position	Hg vapor 1	Hg vapor 2
Hydraulic fluid high pressure	Hydraulic fluid low pressure	Beam window 1 pressure*	Beam window 2 pressure*
Digital Sensor Inputs			
Hydraulic filter dirty switch	Hydraulic low level switch	Conductivity probe	

* Critical for system operation or safety


OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

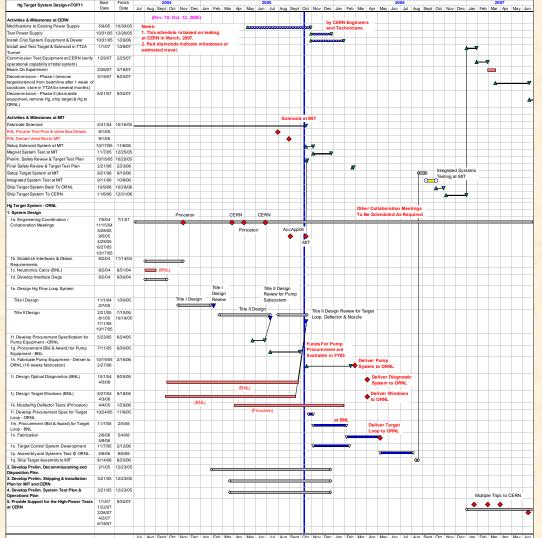


LabView®-Based Control System

- Remote control over long distance limited choices
 - Analog I/O modules need to be close to equipment and power supplies
- LabView controller on laptop computer was chosen
 - National Instruments recommends Compact PCI I/O modules
 - Communicates to laptop via EtherNet cable
 - Allows custom operator interface, data logging if required during development
 - Should allow straightforward integration with other control systems
- Control system development to begin late October

Miscellaneous Equipment For The Target System

Large Items	Small Items	
Vacuum Cleaner- Dry	Merc-X Cleaning Solution	
Snorkel	Sponges	
2 Vapor Monitors	Plastic Buckets	
Spare Filters (qty. TBD)	Plastic Pans	
Glove Box ?	Gauze-roll	
VacuumPump ?	Small Tools	
	Vinyl Tape	
	Herculite	
	Plastic Bags– asst'd (1 gal.– 20 gal.)	
	1-liter plastic bottles	
	Lab Coats/Shoe Covers	
	Tyvek Hooded Suits	
	Nitrile Gloves	
	Full Face Mask/Respirator Cartridges	


OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Project Schedule

- Assemble syringe pump and target hardware May-Jun 2006
- Target system tests at ORNL Jul-Aug 2006
- Integrated system tests at MIT Sep-Oct 2006
- Beam-on-target experiment at CERN Mar-Apr 2007

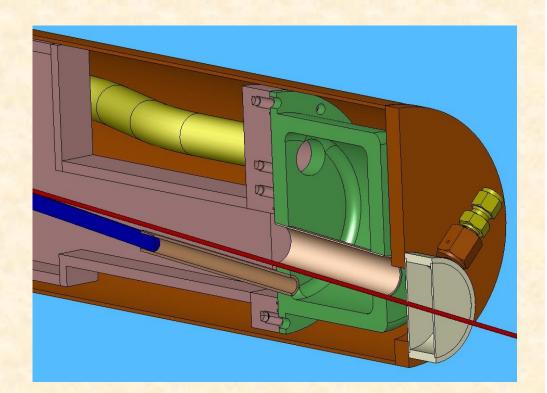
Alternative Configurations for Nozzle/Plenum Are Under Consideration

- Attaching plenum from upbeam end requires smaller diameter plenum
- Rigid supply tubing must bend towards center to accommodate flange bolt circle
- Non-plenum tubing requires Hg flow to bend away from center (adds 4 bends before 180-deg turn)

g g

Muon Collaboration Friday Mtg.

Oct. 28, 2005



OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY (OH

Removable Plenum Concept

- Adding exterior bolts reduces plenum ID
- Beam tube positioning will be a problem
- Plenum wall thicknesses may not be representative

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Conclusions

- Procurement for the Hg delivery system has slipped approx. 1 month
 - Not a problem; sufficient slack in schedule
- Syringe pump system contract was awarded thru BNL – vendor design review in 30 days
- Hg Delivery system procurement package will be sent to BNL before end of November
- Target system is on schedule to meet April 2007 testing at CERN

