Update on Targetry and Capture at a Muon Collider Source

K.T. McDonald *Princeton U.* Feb. 20, 1998

Targetry Meeting at LBNL

http://puhep1.princeton.edu/mumu/target/

Overview

- Targetry & Capture proposal submitted to BNL, Sept. 28, 1998.
- Of \$2M FY99 R&D funds, \$555 allocated to targetry: BNL \$365k, Princeton \$90k, ANL \$75k, LBNL \$25k.
- Spot-size test in FEB U-line, Nov. 17, 1998.
- KTM visited Oak Ridge Lab, Feb. 5, 1999.
- Now interviewing candidates for magnet design engineer to assist B. Weggel.
- To be discussed at this meeting: Site, Target, RF.
- More simulation needed:

Thermal hydraulics and magnetohydrodynamics of liquid metal jets.

MARS + ICOOL for better evaluation of target + capture scenarios.

Site for the AGS Beam Studies

- Desire to test target, pulsed magnet, and low-frequency RF cavity in a 24-GeV beam with single-turn extraction of the full AGS beam $(\approx 10^{14} \text{ protons in } 6 \text{ booster batches over } 1 \text{ }\mu\text{s}).$
1.25-T Solenoid --- **All and Accelerate Contains the Contract of Acceleration** Cerenkov Beam Dump Counter 1.25-20-T Transition Solenoid-2-T Bent Solenoid 20-T Pulsed Solenoid-Channel WIIIIIIITTim**aa** Target 60 cm Ī Proton Beam 70-MHz rf Cavity Low-Pressure TPC -0.7-T Guiding Dipole
- First suggestion was to use the FEB U-line (old neutrino line).
- Tests on Nov. 19, 1999, indicate that cannot focus the beam to better than 3 mm (rms) without quad upgrades; But desire 1 mm rms; Infrastructure in the U-line is minimal.
	- http://ad1.ags.bnl.gov/˜kbrown
	- http://puhep1.princeton.edu/mumu/target/mumu-98-16.ps

• P. Pile suggests we consider a beam line in the Main AGS hall.

- \bullet K. Brown claims 100π mm-mrad will fit thru AGS switchyard.
- T. Roser claims can do fast ejection in main AGS hall.

Target Issues

- Baseline design: pulsed jet of liquid metal (Hg).
- Initial tests with GaSn, a room-temperature liquid: 5 kg purchased. Fast 3-mm valve in hand.
	- But, serious tests not yet begun.
- **Why won't a passive solid target work?** Dismissed in one sentence in the Snowmass book. M. Green's Orcas Island notes are lost.
- H. Kirk will describe a distributed target option.
- Here we (re)consider a water-cooled nickel target.

Water Cooling

- We expect about 400 kW = 100 kCal/s of energy deposited in our target.
- If allow water temp. rise of 100C, need $1 \text{kg/s} = 1$ liter/s flow.
- Various estimates of heat transfer at water/metal boundary: Snowmass book, C. Johnson: 200 W/cm². B. Weggel: 1 kW/cm^2 .
	- J. Haines (ORNL): 2 kW/cm².
- If accept 1 kW/cm^2 , would need 400 cm² surface area.
- Nominal target size is $R = 1$ cm, $L = 30$ cm, $\Rightarrow A = 2\pi R L =$ 188 cm².
- \bullet \Rightarrow Add fins, or run longitudinal or transverse water channels thru the target.

Properties of Nickel

- Z = 28, A = 58.7, $\rho = 8.9$ g/cm³.
- Young's modulus, $E = 200 \text{ GPa}$, Yield strength, $P \approx 0.2 \text{ GPa} \approx 0.001E$, Poisson's ratio $= 0.31$.
- Electrical resisitvity = 6.8 $\mu\Omega$ -cm = 4 × Cu.
- Melting point $= 1453C$, boiling $= 2730C$.
- Thermal expansion coef, $\alpha = 1.3 \times 10^{-5} / \text{C}$ @ 20C.
- Specific heat, $C = 0.44$ J/g-C.
- Thermal conductivitiy, $\kappa = 90 \text{ W/m-C} = 0.9 \text{ W/cm-C}.$
- Permanickel 300 alloy has tensile strength \approx 0.6 GPa, but $\kappa = 60$ W/m-C.
- Nickel is known to have good resistance to thermal shock.

Effect of a Single Beam Pulse on Nickel

• $\Delta U \approx 30 \text{ J/g}$ deposited in each beam pulse ($\Im f = 15 \text{ Hz}$).

$$
\bullet \ \Delta T = \Delta U/C = 30/0.44 = 68
$$

• Estimate thermal shock as

$$
\Delta U = C \Delta T = \frac{C \Delta l}{\alpha l} = \frac{C P}{\alpha E},
$$

 $\Rightarrow P = E\alpha \Delta T = 1.3 \times 10^{-5} \cdot 68 \cdot 200 = 0.18 \text{ GPa}.$

- At or below yield strength for nickel/nickel alloy.
- Lore: the heat generated in a nickel target anneals it to a state of high yield strength, favorable for shock resistance.

Steady-State Thermal Stress

- Steady-state thermal gradients ⇒ stress.
- Simplified model:

Thermal gradient $T(z) \Rightarrow$ differential expansion $\Delta l(z)$.

$$
\frac{\delta \Delta l}{l} = \alpha [T(l) - T(0)] \equiv \alpha \Delta T.
$$

Relate the differential strain to stress via

$$
\frac{\delta \Delta l}{l} \approx \frac{P}{E}.
$$

Then, $P = \epsilon E \alpha \Delta T$, independent of length scale! Detailed calculations show $\epsilon = 0.3$ -0.5.

- To avoid material failure, keep $P/E \leq 0.001$, \Rightarrow Maximum thermal gradient $\Delta T = 0.001/\alpha \epsilon \approx 150C$.
- \Rightarrow Bandsaw must move fast enough that no more than 2 beam pulses hit any given spot.]

• If desire $\Delta T = 100C$ along length l of a volume that presents area A to the cooling water, must have heat transfer rate

$$
\frac{\kappa A \Delta T}{l} = \Delta U f \rho A l,
$$

$$
\Rightarrow l^2 = \frac{\kappa \Delta T}{\Delta U f \rho} = \frac{0.9 \cdot 100}{30 \cdot 15 \cdot 8.9} = 0.023, \Rightarrow l = 0.15 \text{ cm}.
$$

- $\bullet \Rightarrow$ No material can be more than 1.5 mm from a water channel.
- Possible solution: slice target into 100 3-mm-thick disks, \Rightarrow 600 cm² surface area, \Rightarrow need 700 W/cm² cooling. Flow water transversely thru gaps of 1.5-3 mm between disks.
- Questions:

What water pressure is needed?

How massive is the pressure vessel?

Will beam energy deposited in water lead to cavitation damage?

- What is pion yield?
- To go much farther, need professional engineering.