Power Deposition in Graphite Targets of Various Radii

K.T. McDonald, J. Back, N. Souchlas July 10, 2014

Target Studies Weekly Meeting

KT McDonald

The Issue

"Thermal shock" by pulsed beams incident on solid targets will be greatest at the point of peak energy/power deposition (and greater for beams of lower duty cycle).

In large targets (beam dumps/hadron calorimeters), the longitudinal profile of energy deposition has a "shower maximum" ~ 1 pion interaction lengths into the target.

Where is the peak energy deposition in a "pencil" graphite target, of radius ~ 8 mm, as considered for a Muon Collider/Neutrino Factory?

```
Facts: graphite density ~ 1.8 g/cm<sup>3</sup>,
dE/dx = 1.5 MeV/(g/cm<sup>2</sup>),
pion interaction length ~ 72 cm,
radiation length ~ 24 cm.
```

The studies were done for a 4-MW beam of 6.75-GeV-kinetic-energy protons.

The studies reported here were done with MARS15(2014), and FLUKA(2011).

Target at 0°

For a first study, we consider graphite targets at 0 to the magnetic axis, in 0- and 20-T uniform magnetic fields.

B = O T, MARS

The plots show the total power deposited in 1-cm-thick disks, for target of various radii.

 \Rightarrow Largest power deposition only 4 cm into a "pencil" target, but at ~ 60 cm in targets

KT McDonald

with large radius. dE/dx only deposits about 1870 Watts in 1 cm of graphite, for a 4-MW beam.

Target Studies Weekly Meeting

Target at 0°, II

B = 20 T, MARS

B = 20 T, FLUKA

FLUKA indicates 5-10% more power deposition in this comparison.

The FLUKA beam is parallel, with rms radius = 2 mm, while the MARS beam is focused with spot rms radius of 2 mm and β^* = 80 cm.

Target Studies Weekly Meeting

The z-coord. of the target slice with peak power density is constant for radii > 30 cm.

MARS

July 10, 2014

FLUKA

KT McDonald

Target Studies Weekly Meeting

Target at 0° , IV

The total power absorbed in the target increases from ~ 150 kW in a "pencil" target (length = 80 cm, radius = 8 mm) to about 1 MW (out of 4 MW) in a target of 80 cm length and 40 cm radius.

MARS

FLUKA

Target Studies Weekly Meeting

Target at 0° , V

We now want to locate the coordinates of the point with peak local power deposition.

A study not shown confirmed that this point has coord. r = 0.

To find the z coord., we plot the power deposition vs. z in a cylinder with r = 1 mm.

The curves are essentially independent of the target radius (for $r_{\text{target}} > 8 \text{ mm}$).

Target Studies Weekly Meeting

Target at 0°, VI

The z-coord. of the point with peak local power deposition is 2-3 cm into the target, independent of the target radius, as shown in the left figure below.

The peak local power deposition is about 3600 W/g for 0 magnetic field and 4-MW beam power, and about 3400 W/g for 20 T field, as shown in the right figure below.

For 60-Hz beam structure, the peak energy deposition is only about 60 J/g (and 240 J/g for 15-Hz beam structure), for 4-MW beam power.

KT McDonald

Target Studies Weekly Meeting

Target at 65 mrad

Trajectory of the central proton ray for 65-mrad tilt and 20-T field.

The y-coord. of the beam at any z inside the target is essentially the same as the y-coord. of the center of the target.

But, the beam enters the target offset in x by ~ 4.3 mm from the target center.

KT McDonald

 \Rightarrow Peak energy deposition likely offset from the target center.

Target Studies Weekly Meeting

Target at 65 mrad, II

The peak energy deposition is 3598 J/g (~ same as for the 0° case), and occurs for (x,y,z) = (-0.35, 2.85, -37.5) cm (2.5 cm into the target).

KT McDonald

Power deposition in the target slice -4 mm < x < 3 mm.

Target Studies Weekly Meeting

The peak power deposition of 3600 W/g occurs about 37 cm from the center of the target.

The rms radius there is $\sigma_r = 0.2 [1 + (37/80)^2]^{1/2} \sim 0.22 \text{ cm}$, for $\beta^* = 80 \text{ cm}$, \Rightarrow Effective area of a Gaussian beam = $2\pi \sigma_r^2 \sim 0.30 \text{ cm}^2$.

A 4-MW beam of 6.75-GeV protons has N = $4 \cdot 10^6$ J/s / (6.75 $\cdot 10^9$ eV $\cdot 1.6 \cdot 10^{-19}$ J/eV) ~ $3.7 \cdot 10^{15}$ p/s.

```
dE/dx in graphite is 1.5 MeV/(g/cm<sup>2</sup>).
```

The power deposition due to dE/dx at 3 cm into the target is N · dE/dx / Area = 3.7 · 10¹⁵ /s · 1.5 · 10⁶ eV/(g/cm²) · 1.6 · 10⁻¹⁹ J/eV / 0.30 cm² ~ 2950 W/g.

This suggests that the peak power deposition (in our "pencil" target) is only about 1.2 times that due to dE/dx.

Thermal Issues for Solid Targets

When beam pulse length t is less than target radius r divided by speed of sound v_{sound} , beaminduced pressure waves (thermal shock) are a major issue.

Simple model: if U = beam energy deposition in, say, Joules/g, then the instantaneous temperature rise ΔT is given by ΔT = U/C, where C = heat\ capacity in Joules/g/K.

The temperature rise leads to a strain $\Delta r/r$ given by $\Delta r/r = a \Delta T = a U/C$, where a = thermal expansion coefficient.

The strain leads to a stress P (= force/area) given by $P = E \Delta r/r = E a U/C$, where E = modulus of elasticity.

In many metals, the tensile strength obeys $P \approx 0.002 E$, $a \approx 10^{-5}$, and $C \approx 0.3 J/g/K$, in which case $U_{max} \approx PC/Ea \approx 0.002 \cdot 0.3 / 10^{-5} \approx 60 J/g$.

Graphite @ 1400° C: P = 42.4 Mpa, E = 7.2 Gpa, $a = 4.8 \times 10^{-5}$, C = 1.4 J/g, $U_{max} \approx 1700$ J/g. ($a \approx 1 \times 10^{-5}$ for carbon-carbon composite)

[A nickel target at FNAL has operated with $U_{\text{max}} \approx 1500 \text{ J/g.}$]

KT McDonald Target Studies Weekly Meeting

These arguments are from *A Short Course on Targetry*, KTM, <u>NuFact03 Summer Institute</u>

2

How Much Beam Power Can a Solid Target Stand?

What is the maximum beam power this material can withstand without cracking, for a 6.75-GeV beam at 15 Hz with area 0.3 cm²?

Ans: MARS15 indicates that the peak energy deposition in a "pencil" target is about 1.2 times that of dE/dx, \Rightarrow 1.8 MeV/(g/cm²) for graphite.

Now, 1.5 MeV = $2.9 \cdot 10^{-13}$ J, so 1500 J/g requires a proton beam ⁵⁰⁰ intensity of (1500 J/g)/($2.9 \cdot 10^{-13}$ J·cm²/g) $\approx 5 \cdot 10^{15}$ /cm².

July 10, 2014

 $\Rightarrow P_{\max} \approx 15 \text{ Hz} \cdot (6.75 \cdot 10^9 \text{ eV}) \cdot (1.6 \cdot 10^{-19} \text{ J/eV}) \cdot (5. \cdot 10^{15} \text{ /cm}^2) \cdot 0.3 \text{ cm}^2 \approx 2.5 \cdot 10^7 \text{ J/s}$ = 25 MW.

If graphite cracks under singles pulses of > 1500 J/g, then "safe" up to 25-MW beam power @ 15 Hz and 6.75 GeV kinetic energy. (And would be "safe" up to 125 MW-beam power with a carboncarbon target.)

Target Studies Weekly Meeting