Targetry and Capture Issues at a Neutrino-Factory/Muon-Collider Source

	Proton Driver	
$()^{\circ}$		
	Target Phase Rotate #1 Mini Cooling	$egin{array}{llllllllllllllllllllllllllllllllllll$
	Drift	(pprox 150 m)
ĥ	Phase Rotate #2 Cooling	$egin{array}{llllllllllllllllllllllllllllllllllll$
Ĩ	Linac	(2 GeV)
	Recirc. Linac #1	(2-8 GeV)
\bigcap	Recirc. Linac #2	(8-50 GeV)
	Storage Ring	(50 GeV, $pprox$ 1 km circ.)
Nextsing Decay		

Neutrino Beam

Kirk T. McDonald

Princeton U.

mcdonald@puphep.princeton.edu

November 17, 1999

ACCAPP'99, Long Beach, CA

http://puhep1.princeton.edu/mumu/target/

Muon Requirements

- $\approx 10^{14} \ \mu^{\pm}/s$ for either a muon collider or a neutrino factory.
- The muons come from the decay of soft pions produced in *p*-nucleus collisions.
- Our strategy is to maximize the ratio of captured muons per proton.
 - *i.e.*, to minimize the proton requirements.
- Goal: $0.1\mu/p$ delivered for physics use.

The Source

- The muons come from the decay of soft pions produced in *p*-nucleus collisions.
- Need at least $1.5 \times 10^{15} \ p/s$ at 16-24 GeV $\Leftrightarrow 4 \text{ MW}$ beam power.
- Initial muon emittance is about 10^6 larger than desired \Rightarrow Need fast cooling.
- [Our muon beam is 10^6 times hotter than existing beams.]

The Muon Source

- \Rightarrow Capture the soft pions in a solenoid magnet channel.
- Capture efficiency improved with a stronger (20 T) field on the target than in the main channel (1.25 T). [Adiabatic invariance reduces the pion P_{\perp} when going from high to low B.]
- \Rightarrow High-Z target without nearby cooling structure that would absorb pions.
- \Rightarrow Liquid mercury jet target.
- Soft pions have v/c < 1, ⇒ Disperse while drifting
 ⇒ Begin RF manipulation as soon as possible to form a bunch with reduced energy spread (Phase Rotation).

Overview of Targetry and Capture

- $1.2 \times 10^{14} \ \mu^{\pm}$ /s via π -decay from a 4-MW proton beam.
- Proton pulse ≈ 1 ns rms.
- Mercury jet target.
- 20-T capture solenoid followed by a 1.25-T π -decay channel with phase-rotation via rf (to compress energy of the muon bunch).

Targetry and Capture Issues

- Is a liquid jet target viable?
 - -1-ns beam pulse \Rightarrow shock heating of target.
 - Resulting pressure wave may disperse liquid (or crack solid).
 - Damage to target chamber walls?
 - Magnetic field will damp effects of pressure wave.
 - Eddy currents arise as metal jet enters the capture magnet.
 - Jet is retarded and distorted, possibly dispersed.
 - Hg jet studied at CERN, but not in beam or magnetic field:

High-speed photographs of mercury jet target for CERN-PS-AA (laboratory tests) 4,000 frames per second, Jet speed: 20 ms-1, diameter: 3 mm, Reynold's Number:>100,000 A. Poncet

- Is the first rf cavity viable?
 - High-gradient (5 MeV/m), low-frequency (\approx 70 MHz) rf cavity only 3 m downstream of target.
 - $> 10^{14}$ particles traverse the cavity each proton pulse; many hit the cavity wall.
 - Cavities tested against breakdown from beam-induced showers only up to $\approx 10^{12}$ particles/pulse.
- Is the 20-T Solenoid viable?
 - Even with water-cooled tungsten inserts, this hybrid (copper/superconductor) magnet will experience a very high radiation dose.
 - LANL, MSU have experience with superconducting magnets in high radiation areas.
- Other Radiological Issues
 - A 4-MW beam leads to activation issues characteristic of neutron spallation sources.
 - Remote handling of activated liquid target material is under study at CERN ISOLDE, the ORNL NSNS, ...

R&D Goals

Long Term: Provide a facility to test key components of the front-end of a neutrino factory/muon collider in realistic beam conditions.

Near Term (1-2 years): Explore viability of a liquid metal jet target in intense, short proton pulses and (separately) in strong magnetic fields.

(Change target technology if encounter severe difficulties.)

Mid Term (3-4 years): Add 20-T magnet to AGS beam tests; Test 70-MHz rf cavity (+ 1.25-T magnet) downstream of target; Characterize pion yield.

An R&D Program for Targetry and Capture

at a Muon Collider Source

A PROPOSAL TO THE BNL AGS DIVISION

Audrey Bernadon,^d David Brashears,ⁱ Kevin Brown,^b Daniel Carminati,^d
Michael Cates,ⁱ John Corlett,^g F Debray,^f Adrian Fabich,^d Richard C. Fernow,^b
Charles Finfrock,^b Yasuo Fukui,^c Tony A. Gabriel,ⁱ Juan C. Gallardo,^b
Michael A. Green,^g George A. Greene,^b John R. Haines,ⁱ Jerry Hastings,^b
Ahmed Hassanein,^a Michael Iarocci,^b Colin Johnson,^d Stephen A. Kahn,^b
Bruce J. King,^b Harold G. Kirk,^{b,1} Jacques Lettry,^d Vincent LoDestro,^b
Changguo Lu,^j Kirk T. McDonald,^{j,2} Nikolai V. Mokhov,^e
Alfred Moretti,^e James H. Norem,^a Robert B. Palmer,^b Ralf Prigl,^b Helge Ravn,^d
Bernard Riemer,ⁱ James Rose,^b Thomas Roser,^b Roman Samulyak,^b
Joseph Scaduto,^b Peter Sievers,^d Nicholas Simos,^b Philip Spampinato,ⁱ
Iuliu Stumer,^b Peter Thieberger,^b James Tsai,ⁱ Thomas Tsang,^b Haipeng Wang,^b

^aArgonne National Laboratory, Argonne, IL 60439
^bBrookhaven National Laboratory, Upton, NY 11973
^cUniversity of California, Los Angeles, CA 90095
^dCERN, 1211 Geneva, Switzerland
^eFermi National Laboratory, Batavia, IL 60510
^fGrenoble High Magnetic Field Laboratory, 38042 Grenoble, France
^gLawrence Berkeley National Laboratory, Berkeley, CA 94720
^hMichigan State University, East Lansing, MI 48824
ⁱOak Ridge National Laboratory, Oak Ridge, TN 37831
^jPrinceton University, Princeton, NJ 08544

(Submitted Sept. 28, 1998; approved as BNL E951 Oct. 1, 1999)

¹Project Manager. Email: hkirk@bnl.gov

²Spokesperson. Email: kirkmcd@princeton.edu

The 8 Steps in the R&D Program

- 1. Simple tests of liquid (Ga-Sn, Hg) and solid (Ni) targets with AGS Fast Extracted Beam (FEB).
- 2. Test of liquid jet entering a 20-T magnet (20-MW cw Bitter magnet at the National High Magnetic Field Laboratory).
- 3. Test of liquid jet with 10^{14} ppp via full turn FEB (without magnet).
- 4. Add 20-T pulsed magnet (4-MW peak) to liquid jet test with AGS FEB.
- 5. Add 70-MHz rf cavity downstream of target in FEB.
- 6. Surround rf cavity with 1.25-T magnet. At this step we have all essential features of the source.
- 7. Characterize pion yield from target + magnet system with slow extracted beam (SEB).
- 8. Ongoing simulation of the thermal hydraulics of the liquidmetal target system.

Step 1: Initial Tests with FEB

• Site presently under consideration: A3 line.

• First test: liquid metal in a trough, a pipe and in free flow. CAMERA VIEW

• Instrumentation: high-speed camera,

fiberoptic strain sensors (Duncan Earl, ORNL).

Step 2: Pulsed Liquid Jet

• Inspiration:

• Hg jet under construction at CERN (Colin Johnson, Helge Ravn), and at Princeton.

Step 3: Full Turn Extraction

- G10 kicker can deliver beam to A-C lines as well as to U line.
- Present power supply sufficient to kick out only 1 bunch.
- Upgrade to kick out all 6 bunches requires ≈ 18 months.
- Initiate design work in FY00 to complete upgrade in FY01. RGS Fast Extraction: Displacement at F5 for 2 mrad kick at G10

Step 4: Pulsed 20-T Magnet

- The copper magnet will be cooled by LN_2 , and can be pulsed once every 10 minutes. Pulse duration ≈ 1 s.
- Engineers: Bob Weggel, Bill Sands, designer: Bob Duffin.
- 4 MW (peak) power to be bussed from the MPS power supply house to the A3 line (Andy Soukas).
- 100 liters of LN_2 boiled off each pulse; vent outside of cave.
- A DC magnet is required as a transition between the pulsed magnet and the DC superconducting magnet around the rf cavity. This will require ≈ 1 MW average power.

Step 5: 70-MHz RF Cavity

- Cavity has 60-cm-diameter iris, 2-m outer diameter. (Jim Rose, BNL, Werner Pirkl, CERN)
- 4-6 MW peak power to be supplied by four 8973 tubes recommissioned from the LBL Hilac.

(Vince LoDestro, BNL; Don Howard, LBL)

 We are also embarking on an R&D program with industry to develop a 50-MW peak power, 70-MHz power supply (EEV, Eimac, Litton, Thomson).

Step 6: 1.25-T Solenoid Around RF Cavity

• Present plan: use PEP-4 TPC superconducting solenoid (Mike Green, LBL).

Step 7: Characterization of Pion Yield

- The final measure of system performance is the capture of soft pions that later decay to muons.
- Add bent solenoid spectrometer downstream of TPC magnet.
- Instrument with low-pressure TPC's and aerogel Čerenkov counters.
- Collect data with slow beam, $< 10^6$ ppp.

Step 8: Simulation of Beam-Jet-Magnet

- ANSYS 5.4 MAY 11 1999 18:01:36 deformed cylinder NODAL SOLUTION STEP=1 SUB =1 TIME=1 USUM (AVG) RSYS=0 PowerGraphics EFACET=1 AVRES=Mat DMX =.014846 SMX =.014846 0 .00165 .003299 .004949 .006598 .008248 .009897 .011547 .013196 .014846 undeformeed cylinder solenoid coil STRUCTURAL ANALYSIS
- ANSYS simulation (Changguo Lu, Princeton):

• HEIGHTS simulation (Ahmed Hassanein, ANL):

Mercury Jet with 4 mm Beam and B-field Diffused in

Schedule of Targetry & Capture R&D

• FY99:

Begin preparations of BNL A3 area; begin work on liquid jets.

• FY00:

Initial beam tests in A3 line. Liquid jet test at NHMFL. (600 hours of AGS beamtime);

Begin work on extraction upgrade, magnet systems, and rf systems.

• FY01:

Complete extraction upgrade; test of liquid jet + beam. (600 hours).

• FY02:

Complete magnet and rf systems; test with 2 ns beam. (600 hours).

• FY03:

Complete pion detectors; test with low intensity SEB. (600 hours).