

The R&D Program for Targetry and Capture at a Neutrino Factory and Muon Collider Source

(BNL E951)

K.T. McDonald Princeton U.

NuFACT'01, Tsukuba, Japan, May 26, 2001 http://puhep1.princeton.edu/mumu/target/

KIRK T. MCDONALD MAY 26, 2001 1

Challenges

- Maximal production of soft pions \rightarrow muons in a megawatt proton beam.
- Capture pions in a 20-T solenoid, followed by a 1.25-T decay

- A carbon target is feasible for 1.5-MW proton beam power.
- For $E_p \gtrsim 16$ GeV, factor of 2 advantage with high-Z target.
- Static high-Z target would melt, \Rightarrow Moving target.
- A free mercury jet target is feasible for beam power of 4 MW (and more). KIRK T. MCDONALD MAY 26, 2001 \blacksquare

Feasibility Issues

- Pion/muon yield.
- Lifetime of components in high radiation environment.
- Mercury jet interaction with beam and magnet.
- Design of the 20-T capture magnet.
- Beam entrance and exit windows.
- Proton beam absorber.
- Mercury flow loop.
- Target system support facility.

Pion/Muon Yield

For $E_p \gtrsim 10$ GeV, more yield with high-Z target.

Mercury target radius should be \approx 5 mm,

with target axis tilted by ≈ 100 mrad to the magnetic axis.

Can capture ≈ 0.3 pion per proton with $50 < P_{\pi} < 400$ MeV/c. KIRK T. MCDONALD MAY 26, 2001 4

The Neutrino Factory and Muon Collider Collaboration

Target System Layout

Mercury jet target inside a magnetic bottle: 20-T around target, dropping to 1.25 T in the pion decay channel.

Mercury jet tilted by 100 mrad, proton beam by 67 mrad.

Lifetime of Components in the High Radiation

Environment

Some components must be replacable.

KIRK T. MCDONALD MAY 26, 2001 6

Viability of Targetry and Capture For a Single Pulse

• Beam energy deposition may disperse the jet.

• Eddy currents may distort the jet as it traverses the magnet.

E951 Studies the Single Pulse Issues

Overall Goal: Test key components of the front-end of a neutrino factory in realistic single-pulse beam conditions.

Near Term (1-2 years): Explore viability of a liquid metal jet target in intense, short proton pulses and (separately) in strong magnetic fields.

Mid Term (3-4 years): Add 20-T magnet to beam tests;

Test 70-MHz rf cavity $(+ 1.25-T$ magnet) 3 m from target;

The E951 Collaboration

Audrey Bernadon,^d David Brashears,ⁱ Kevin Brown,^b Daniel Carminati,^d Michael Cates,^{*i*} John Corlett,^g F Debray,^{*f*} Adrian Fabich,^d Richard C. Fernow,^{*b*} Charles Finfrock,^b Yasuo Fukui,^c Tony A. Gabriel,ⁱ Juan C. Gallardo,^b Michael A. Green,^g George A. Greene,^b John R. Haines,ⁱ Jerry Hastings,^b Ahmed Hassanein,^a Michael Iarocci,^b Colin Johnson,^d Stephen A. Kahn,^b Bruce J. King,^b Harold G. Kirk,^{b,1} Jacques Lettry,^d Vincent LoDestro,^b Changguo Lu,^j Kirk T. McDonald,^{j,2} Nikolai V. Mokhov,^e Alfred Moretti,^e James H. Norem,^a Robert B. Palmer,^b Ralf Prigl,^b Helge Ravn,^d

Bernard Riemer,^{*i*} James Rose,^{*b*} Thomas Roser,^{*b*} Roman Samulyak,^{*b*} Joseph Scaduto,^b Peter Sievers,^d Nicholas Simos,^b Philip Spampinato,ⁱ Iuliu Stumer, ^b Peter Thieberger, ^b James Tsai,ⁱ Thomas Tsang, ^b Haipeng Wang, ^b

Robert Weggel,^b Albert F. Zeller,^h Yongxiang Zhao^b

 a Argonne National Laboratory, Argonne, IL 60439 b Brookhaven National Laboratory, Upton, NY 11973 c University of California, Los Angeles, CA 90095 d CERN, 1211 Geneva, Switzerland e Fermi National Laboratory, Batavia, IL 60510 f Grenoble High Magnetic Field Laboratory, 38042 Grenoble, France ^gLawrence Berkeley National Laboratory, Berkeley, CA 94720 ^hMichigan State University, East Lansing, MI 48824 ⁱOak Ridge National Laboratory, Oak Ridge, TN 37831 ^jPrinceton University, Princeton, NJ 08544

¹Project Manager. Email: hkirk@bnl.gov

²Spokesperson. Email: kirkmcd@princeton.edu

The Neutrino Factory and Muon Collider Collaboration

Solid Target Tests (5e12 ppp, 24 GeV, 100 ns)

Carbon, aluminum, Ti90Al6V4, Inconel 708, Havar, instrumented

with fiberoptic strain sensors.

-8 -4 0 4 8 12 16 20 micro

Passive Mercury Target Tests

Exposures of 150 ns at $t = 0, 0.2, 0.4, 0.6$ and 0.8 msec, 4e12 protons, $\Rightarrow v_{\text{splash}} \approx 75 \text{ m/s}$ (then slowed by air drag):

Studies of Proton Beam + Mercury Jet

1-cm-diameter Hg jet in 2e12 protons at $t = 0, 0.75, 2, 7, 18$ ms.

Model: $v_{\text{dispersal}} =$ Δr Δt = $r\alpha\Delta T$ $r/v_{\rm sound}$ = αU \overline{C} $v_{\text{sound}} \approx 50 \text{ m/s}$ for $U \approx 100 \text{ J/g}.$

Data: $v_{\text{dispersal}} \approx 10 \text{ m/s}$ for $U \approx 25 \text{ J/g}.$

 $v_{\text{dispersal}}$ appears to scale with proton intensity.

The dispersal is not destructive. KIRK T. MCDONALD MAY 26, 2001 13

Tests of a Mercury Jet in a 13 T Magnetic Field (CERN/Grenoble High Magnetic Field Laboratory)

Eddy currents may distort the jet as it traverses the magnet.

Analytic model suggests little effect if jet nozzle inside field.

4 mm diam. jet, $v = 4.6$ m/s, $B = 0$ T; $v = 4.0$ m/s, $B = 13$ T:

⇒ Damping of surface tension waves (Rayleigh instability).

20-T Capture Magnet System

Inner, hollow-conductor copper coils generate 6 T \odot 12 MW:

Bitter-coil option less costly, but marginally feasible.

Outer, superconducting coils generate 14 T @ 600 MJ:

Cable-in-conduit construction similar to ITER central solenoid.

Both coils shielded by tungsten-carbide/water.

KIRK T. MCDONALD MAY 26, 2001 15

Double Beryllium Foil Beam Windows

Upstream window stressed by beam heating; must be replaceable.

60-cm-diam. downstream window stressed by pressure; must be removable. Double-curved profile favored.

Mercury Pool Proton Beam Absorber

The unscattered proton beam is absorbed in a "windowless" pool of mercury.

Baffles mitigate splashing of mercury due to entry of both the proton beam and the mercury jet.

The proton absorber is replacable.

Mercury Flow Loop

110 l of mercury flow in a closed loop at 2 cyles/min.

Activation products can be distilled off in a hot cell.

Target System Support Facility

Extensive shielding; remote handling capability.

Summary

- A target sytem based on a mercury jet in a 20-T capture solenoid is feasible at 1-4 MW beam power.
- Solid target alternatives include graphite rods or a rotating nickel band.
- An early upgrade to 4-MW may be the quickest path to higher neutrino fluxes.
- Continued R&D is needed. The next step is a combined test of a mercury jet in a proton beam and in a 20-T pulsed magnet (BNL E951 phase 2).