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Challenges

• Maximal production of soft pions → muons in a megawatt

proton beam.

• Capture pions in a 20-T solenoid, followed by a 1.25-T decay

channel.
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• A carbon target is feasible for 1.5-MW proton beam power.

• For Ep
>∼ 16 GeV, factor of 2 advantage with high-Z target.

• Static high-Z target would melt, ⇒ Moving target.

• A free mercury jet target is feasible for beam power of 4 MW

(and more).
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The Neutrino Horn Issue

• A precursor to a Neutrino Factory is a Neutrino Superbeam

based on decay of pions from a multimegawatt proton target

station.

• 4 MW proton beams are achieved in both the BNL and FNAL

(and CERN) scenarios via high rep rates: ≈ 106/day.

• Classic neutrino horns based on high currents in conductors

that intercept much of the secondary pions will have lifetimes

of only a few days in this environment.

• Consider instead a solenoid horn with conductors at larger radii

than the pions of interest – similar to the Neutrino Factory

capture solenoid.

• Adiabatic reduction of the solenoid field along the axis,

⇒ Adiabatic reduction of pion transverse momentum,

⇒ Focusing.

See, http://pubweb.bnl.gov/users/kahn/www/talks/Homestake.pdf
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A Carbon Target is Feasible at 1-MW Beam Power
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A carbon-carbon composite with near-zero thermal expansion is

largely immune to beam-induced pressure waves.

Sublimation of carbon is negligible in a helium atmosphere.

Radiation damage is limiting factor: ≈ 12 weeks at 1 MW.

A rotating band target is another option:
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Pion/Muon Yield

For Ep
>∼ 10 GeV, more yield with high-Z target.
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Mercury target radius should be ≈ 5 mm,

with target axis tilted by ≈ 100 mrad to the magnetic axis.
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Can capture ≈ 0.3 pion per proton with 50 < Pπ < 400 MeV/c.
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Target System Layout

Mercury jet target inside a magnetic bottle: 20-T around target,

dropping to 1.25 T in the pion decay channel.
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Mercury jet tilted by 100 mrad, proton beam by 67 mrad.
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Lifetime of Components in the High Radiation

Environment
FS−2 24 GeV Target Station: MARS14 02/19/01R,

Z,

Z
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Azimuthally averaged absorbed dose (MGy/yr)

Component Radius Dose/yr Max allowed Dose 1 MW Life 4 MW life

(cm) (Grays/2× 107 s) (Grays) (years) (years)

Inner shielding 7.5 5× 1010 1012 20 5

Hg containment 18 109 1011 100 25

Hollow conductor 18 109 1011 100 25

coil

Superconducting 65 5× 106 108 20 5

coil

Some components must be replaceable.
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Viability of Targetry and Capture For a Single Pulse

• Beam energy deposition may disperse the jet.

• Eddy currents may distort the jet as it traverses the magnet.
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E951 Studies the Single Pulse Issues

Overall Goal: Test key components of the front-end of a

neutrino factory in realistic single-pulse beam conditions.

Near Term (1-2 years): Explore viability of a liquid metal jet

target in intense, short proton pulses and (separately) in strong

magnetic fields.

Mid Term (3-4 years): Add 20-T magnet to beam tests;

Test 70-MHz rf cavity (+ 1.25-T magnet) 3 m from target;

Characterize pion yield.
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Solid Target Tests (5e12 ppp, 24 GeV, 100 ns)

Carbon, aluminum, Ti90Al6V4, Inconel 708, Havar, instrumented

with fiberoptic strain sensors.
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Passive Mercury Target Tests

Exposures of 25 µs at
t = 0, 0.5, 1.6, 3.4 msec,
⇒ vsplash ≈ 20− 40 m/s:

    

Two pulses of ≈ 250 ns give larger dispersal velocity only if

separated by less than 3 µs.
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Studies of Proton Beam + Mercury Jet

m

Mercury

Jet

1-cm-diameter Hg jet in 2e12 protons at t = 0, 0.75, 2, 7, 18 ms.

     

Model: vdispersal =
∆r

∆t
=

rα∆T

r/vsound
=

αU

C
vsound ≈ 50 m/s

for U ≈ 100 J/g.

Data: vdispersal ≈ 10 m/s for U ≈ 25 J/g.

vdispersal appears to scale with proton intensity.

The dispersal is not destructive.
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Tests of a Mercury Jet in a 13 T Magnetic Field

(CERN/Grenoble High Magnetic Field Laboratory)

Eddy currents may distort the jet as it traverses the magnet.

Analytic model suggests little effect if jet nozzle inside field.

4 mm diam. jet, v = 4.6 m/s, B = 0 T; v = 4.0 m/s, B = 13 T:

  
⇒ Damping of surface tension waves (Rayleigh instability).
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20-T Capture Magnet System

Inner, hollow-conductor copper coils generate 6 T @ 12 MW:

Bitter-coil option less costly, but marginally feasible.

Outer, superconducting coils generate 14 T @ 600 MJ:
 

Incoloy Alloy 908 Conduit >1000 superconducting wires 
Supercritical helium flows in interstices 

 and central channel  

Cable-in-conduit construction similar to ITER central solenoid.

Both coils shielded by tungsten-carbide/water.
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Target System Support Facility

Extensive shielding; remote handling capability.
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Summary of Targetry Activities Through FY01

• Liquid metal targets in vessels show beam-induced cavitation

damage to entrance window (ISOLDE, 1995, LANL, 2001).

• Beam tests of large passive mercury target for SNS (BNL 1998,

LANL 2000) suggest velocity of sound may be reduced

temporarily by beam-induced microcavitation).

• MARS simulations of beam-target interactions ⇒ advantage

of high-Z target, of high-field capture solenoid, of tilted beam

and target, and disadvantages of high radiation dose (Mokhov).

• Analytic simulations of beam-induced pressure waves in target

(Sievers), and of MHD effects of mercury jet entering magnet

(KTM, Palmer, Weggel) indicate “feasibility”, but need for

R&D.

• Numerical simulations (Hassanein, Samulyak) tend to confirm

these analytic estimates.
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• Beam tests of high-strength solid targets show good agreement

between strain-sensor data and ANSYS simulation, and

suggest that they can survive single-pulse stresses up to Study-

2 design intensity, = 16 TP / 8 mm2 (BNL, March ’01).

• Calculation and experiment indicate that a carbon target could

survive against sublimation in a He atmosphere in a 4 MW

beam (Thieberger, ORNL).

• Beam tests of active and passive mercury targets indicate

dispersal velocities of manageable size, proportional to proton

pulse energy (BNL, April ’01; ISOLDE, Aug. ’01).

• Tests of mercury jets entering a high-field solenoid not yet

definitive (CERN, Grenoble, 2001).
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Issues for Further Targetry R&D

• Continue numerical simulations of MHD + beam-induced

effects [Samulyak].

• Continue tests of mercury jet entering magnet

[CERN, Grenoble].

• For solid targets, study radiation damage – and issues of heat

removal from solid metal targets (bands, chains, etc.).

• Confirm manageable mercury-jet dispersal in beams up to full

Study-2 intensity – for which single-pulse vaporization may

also occur. Test Pb-Bi alloy jet.

• Study issues when combine intense proton beam with mercury

jet inside a high-field magnet.

1. MHD effects in prototype target configuration.

2. Magnetic damping of mercury-jet dispersal.

3. Beam-induced damage to jet nozzle – in the magnetic field.
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Further Beam Studies without High-Field Magnet

• Studies of production of mercury jets up to 20 m/s. Jet quality

is the issue.

• Construction of new liquid metal jet targets with continuous

flow: mercury and Wood’s metal.

• Upgrade AGS to 8/16 TP single pulses [Roser].

1. Improve control of fast extraction with bipolar power supply

for a key vertical sextupole.

2. Improve control of chromaticity of bunches during

transition with heftier power supply for main ring horizontal

sextupoles.

3. Explore schemes for 2:1 bunch merging at 24 GeV via rf

manipulation.

• Test the continuous-flow targets in beam once at least 8 TP

per pulse are available.

• [Radiation damage studies of solid targets at BNL booster.]
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Further Beam Studies with a High-Field Magnet

• Study jet dispersal, and possible damage to nozzle, as a

function of beam intensity, magnetic field strength,

and nozzle position.

• Online diagnostics will primarily be optical (+ possible use of

fiberoptic strain sensors).

CERN/Grenoble optical system
that fits in 20-cm magnet bore:
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• To be affordable, construct a 15-T pulsed solenoid magnet.
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What Magnetic Field Strength is Appropriate?

• Our muon collider and neutrino factory designs have long called

for a 20-T capture solenoid.
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A 20-T magnet must be a hybrid: 6-T copper “insert” + 14-T

superconducting “outsert”.

The small gain in performance from 14 to 20 T may not warrant

the cost and complexity of the hybrid magnet.

A capture solenoid for a superbeam needs a larger bore to trap

higher P⊥ pions, for which 14 T is then sufficient.

⇒Our physics goals are well satisfied by a 14-T capture solenoid.

Kirk T. McDonald May 9, 2002 22



The Neutrino Factory and Muon Collider Collaboration

Should the Pulsed R&D Magnet have Lower Field?

• Most magnetic-field effects on the mercury jet scale as the

magnetic pressure B2/8π (for a fixed geometry).

• Thus, a study using a 5-T magnet would require a factor of 8

extrapolation to the desired performance at 14 T.

• Present cost estimates indicate that we can build a 14-T pulsed

magnet for about twice the cost of a 5-T pulsed magnet.

• ⇒ We propose to construct a 14.5-T pulsed magnet, that can

be staged as a 5-T and 10-T magnet.
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A 14.5-T Pulsed Magnet with 5- and 10-T Phased

Options

Phase No. of PS Coolant Temp. Field

1 1 N2 84 K 5 T

2 4 N2 74 K 10 T

3 4 H2 30 K 14.5 T
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Keeping Costs Low

• Simple solenoid geometry with rectangular coil cross section

and smooth bore (of 20 cm diameter) [Weggel, Titus].

• Power supply built out of 4 existing 540 kVA supplies that can

be fed by a single, existing substation [Marneris].

• Cryogenic system reduces coil resistance to give high field at

relatively low current [Iarocci].

– Circulating coolant is gaseous He to minimize activation,

and to avoid need to purge coolant before pulsing magnet.

– Heat exchanger recycled from the SSC.

– Phase 1 & 2 cooling via N2 boiloff; Phase 3 via H2.
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Pulsed Magnet System Layout at the AGS

• Locate the 4 x 540 kVA power supplies on the east side of the

A3 cave, feed power in via the trench.

• If satisfactory to Safety Committee, locate the heat exchanger

and LH2 dewar in a concrete enclosure that extends the present

A3 beam stop.
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Other Works in Progress

• AGS sextupole power supply upgrades (Brown, Sandberg).

• 2 → 1 AGS bunch merging via rf manipulation

(Brown, Brennan).

• 2nd round of liquid metal jets: 2.5 → 20 m/s; Hg and Pb/Bi

alloy (Kirk, McDonald).

• Radiation damage studies of Invar at BLIP (Thieberger, Weggel).

• Graphite sublimation in a He atmosphere

(Haines, Spampinato).

• FEA simulations (Samulyak).
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