Targets for Neutrino Factories and Muon Colliders

K.T. McDonald Princeton U. Muon Collaboration Meeting Riverside Mission Inn January 29, 2004 http://puhep1.princeton.edu/mumu/target/

Sketches of a 4-MW Target Station

High Performance Muon and Neutrino Beams Require a High Performance Source

- Existing target technologies can perhaps be extrapolated for use in 2 MW proton beams.
- High-power targetry important for muon colliders, neutrino factories, "conventional" secondary beams, accelerator production of tritium, accelerator transmutation of waste, fusion materials test facilities,
- Common targetry challenges explored in the Ronkonkoma Workshop (Sept. 2003, Harold Kirk).
- For modest extrapolation, key issues are materials properties after irradiation. \Rightarrow Continuation of solid target studies at the BNL BLIP (Nick Simos).
- For use in $\gtrsim 2$ MW beams, need new options such as liquid metal jet targets.
- BNL/CERN tests of mercury + beam and mercury + 20-T magnet are encouraging,
 ⇒ Make system test of mercury + magnet + beam (Peter Titus, Helmut Haseroth).
- Beam tests are supplemented by magnetohydrodynamic numerical simulations (Roman Samulyak).

KIRK T. MCDONALD

MUON COLLABORATION MEETING, JAN. 29, 2004

Thermal Shock

When beam pulse length t is less than target radius r divided by speed of sound v_{sound} , beam-induced pressure waves (thermal shock) are a major issue.

Simple model: if U = beam energy deposition in, say, Joules/g, then the instantaneous temperature rise ΔT is given by

$$\Delta T = \frac{U}{C} \,,$$

where C = heat capacity in Joules/g/K.

The temperature rise leads to a strain $\Delta r/r$ given by

$$\frac{\Delta r}{r} = \alpha \Delta T = \frac{\alpha U}{C} \,,$$

where α = thermal expansion coefficient.

The strain leads to a stress P (= force/area) given by

$$P = E \frac{\Delta r}{r} = \frac{E \alpha U}{C} \,,$$

where E is the modulus of elasticity.

In many metals, the tensile strength obeys $P \approx 0.002E$, $\alpha \approx 10^{-5}$, and $C \approx 0.3 \text{ J/g/K}$, in which case

$$U_{\text{max}} \approx \frac{PC}{E\alpha} \approx \frac{0.002 \cdot 0.3}{10^{-5}} \approx 60 \text{ J} / \text{g}.$$

How Much Beam Power Can a Solid Target Stand?

How many protons are required to deposit 60 J/g in a material? What is the maximum beam power this material can withstand without cracking, for a 10-GeV beam at 10 Hz with area 0.1 cm^2 .

Ans. If we ignore "showers" in the material, we still have dE/dx ionization loss, of about 1.5 MeV/g/cm². Now, 1 MeV = 1.6×10^{-13} J, so 60 J/ g requires a proton beam intensity of $60/(1.6 \times 10^{-13}) = 10^{15}/\text{cm}^2$. Then, $P_{\text{max}} \approx 10 \text{ Hz} \cdot 10^{10} \text{ eV} \cdot 1.6 \times 10^{-19} \text{ J/eV} \cdot 10^{15}/\text{cm}^2 \cdot 0.1 \text{ cm}^2$ $\approx 1.6 \times 10^6 \text{ J/s} = 1.6 \text{ MW}.$

Solid targets are viable up to about 1.5 MW beam power!

Window Tests (5e12 ppp, 24 GeV, 100 ns)

Aluminum, Ti90Al6V4, Inconel 708, Havar, instrumented with fiberoptic strain sensors.

A Carbon Target is Feasible at 1-MW Beam Power

A carbon-carbon composite with near-zero thermal expansion is largely immune to beam-induced pressure waves.

A carbon target in vacuum sublimates away in 1 day at 4 MW.

Power Deposited in Target (kW)

60

80

100

40

20

Sublimation of carbon is negligible in a helium atmosphere. Tests underway at ORNL to confirm this.

Radiation damage is limiting factor: ≈ 12 weeks at 1 MW.

KIRK T. MCDONALD

MUON COLLABORATION MEETING, JAN. 29, 2004

1E-10

0

Effects of Radiation on SuperInvar

New Round of Irradiation Studies

Are "high performance" alloys still high performance after irradiation? Materials to be studied:

- 1. Vascomax 350 (high strength steel for bandsaw target).
- 2. Ti90Al6V4 (titanium alloy for linear collider positron target).
- 3. Toyota "gum" metal (low-thermal expansion titanium alloy).
- 4. AlBeMet (aluminum/beryllium alloy).
- 5. Graphite (baseline for J-PARC neutrino production target).
- 6. Carbon-carbon composite (3-d weave with low-thermal expansion).

Opportunity for a European Targetry R&D Project

A proposal to the European Union Sixth Framework Programme (FP6) for a "Design Study for Neutrino Factory Target R&D" will be submitted in March 2004. Lead: R. Edgecock (RAL).

Topics:

- 1. The Mercury Jet Target.
- 2. The Granular Target.
- 3. The Contained Metal Jet Target.
- 4. Target Station Design Studies.
- 5. Simulations of Beam/Target Interactions.

The Muon Collaboration Targetry Group will have an adjunct status on this proposal. Our most immediate interest is topic 1, in the form of a beam test at CERN.

A Granular Target

Beam entrance window an issue.

P. Sievers, http://molat.home.cern.ch/molat/neutrino/nf127.pdf

DITI: BELLOWS BELLOWS VACUUM BEAM PIVOT AIR COOLING He COOLING He COOLING HE COOLING PIPES BELLOWS HEAM COOLING HE COOLING PIPES

Inside a neutrino horn:

A Liquid Metal Jet May Be the Best Target for Beam Power above 1.5 MW

Mercury jet target inside a magnetic bottle: 20-T around target, dropping to 1.25 T in the pion decay channel.

Mercury jet tilted by 100 mrad, proton beam by 67 mrad, to increase yield of soft pions.

Beam-Induced Cavitation in Liquids Can Break Pipes

Snapping shrimp stun prey via

cavitation bubbles. 2 cm d в **Sound pressure P**^s (10² Pa) 0.50 - 0. 2 -1.25 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 Time (ms) -1.25 ms Before After -1.00 ms -0.75 ms -0.50 ms -0.25 ms 0 ms TL - High Power Target Specimen # 29754 Equivalent SNS Power Level = 2.5 ⊦0.25 ms 2 cm

ISOLDE:

BINP:

SNS:

KIRK T. MCDONALD

MUON COLLABORATION MEETING, JAN. 29, 2004

The Shape of a Liquid Metal Jet under a Non-uniform Magnetic Field

Fig. 10 Cross-sectional shape of the jet obtained by spot a electrode probe

S. Oshima *et al.*, JSME Int. J. **30**, 437 (1987).

MUON COLLABORATION MEETING, JAN. 29, 2004

Passive Mercury Target Tests (BNL and CERN)

Exposures of 25 μ s at t = 0, 0.5, 1.6, 3.4 msec, $\Rightarrow v_{\text{splash}} \approx 20 - 40 \text{ m/s}$:

Two pulses of ≈ 250 ns give larger dispersal velocity only if separated by less than 3 μ s.

Studies of Proton Beam + Mercury Jet (BNL)

1-cm-diameter Hg jet in 2e12 protons at t = 0, 0.75, 2, 7, 18 ms.

Model (Sievers):
$$v_{\text{dispersal}} = \frac{\Delta r}{\Delta t} = \frac{r\alpha\Delta T}{r/v_{\text{sound}}} = \frac{\alpha U}{C} v_{\text{sound}} \approx 50 \text{ m/s}$$
for $U \approx 100 \text{ J/g}$.

Data: $v_{\text{dispersal}} \approx 10 \text{ m/s}$ for $U \approx 25 \text{ J/g}$.

 $v_{\text{dispersal}}$ appears to scale with proton intensity.

The dispersal is not destructive.

Filaments appear only $\approx 40 \ \mu s$ after beam, \Rightarrow after several bounces of waves, or v_{sound} very low.

Tests of a Mercury Jet in a 20-T Magnetic Field (CERN/Grenoble, A. Fabich, Ph.D. Thesis)

Eddy currents may distort the jet as it traverses the magnet.

Analytic model suggests little effect if jet nozzle inside field.

4 mm diam. jet, $v \approx 12 \text{ m/s},$ B = 0, 10, 20 T.

 $\Rightarrow Damping of$
surface-tension waves
(Rayleigh instability).

Will the beam-induced dispersal be damped also?

Computational Magnetohydrodynamics (R. Samulyak, Y. Pyrkarpatsky)

Use equation of state that supports negative pressures, but gives way to cavitation.

Critical point : $T_c = 1750$ K, $P_c = 172$ MPa, $V_c = 43$ cm³ mol⁻¹ Boiling point : $T_b = 629.84$ K, $P_b = 0.1$ MPa, $\rho = 13.546$ g · cm⁻³

Thimble splash at 0.24, 0.48, 0.61, 1.01 μs

Magnetic damping of beam-induced filamentation:

Issues for Further Targetry R&D

- Continue numerical simulations of MHD + beam-induced effects.
- Continue tests of mercury jet entering magnet.
- For solid targets, study radiation damage and issues of heat removal from solid metal targets (carbon/carbon, Toyota Ti alloy, bands, chains, *etc.*).
- Confirm manageable mercury-jet dispersal in beams up to 10¹⁴ protons/pulse
 for which single-pulse vaporization may also occur. Test Pb-Bi alloy jet.
- Study issues when combine intense proton beam with mercury jet inside a high-field magnet.
 - 1. MHD effects in a **prototype target configuration**.
 - 2. Magnetic damping of mercury-jet dispersal.
 - 3. Beam-induced damage to jet nozzle in the magnetic field.
- \Rightarrow We are constructing a 15-T pulsed magnet, that can be staged as a 5-T and 10-T magnet.

A 2-5 m/s Continuous Flow Mercury Jet

A 2.5-m/s, continuous-flow version of the free mercury jet target was constructed for use in the BNL A3 line.

Completed Oct 2003. Now in storage.

Most components fabricated for a 2nd version using Wood's metal. (However, the Wood's metal wets the quartz windows.)

A 15-T LN_2 -Cooled Pulsed Solenoid

- Simple solenoid geometry with rectangular coil cross section and smooth bore (of 20 cm diameter)
- Cryogenic system reduces coil resistance to give high field at relatively low current.
 - Circulating coolant is gaseous He to minimize activation, and to avoid need to purge coolant before pulsing magnet.
 - Cooling via N₂ boiloff.
- Most cost effective to build the 4.5-MW supply out of "car" batteries! (We need at most 1,000 pulses of the magnet.)

Magnet Can Be Cooled by Forced Flow of LN_2

Force the LN_2 via pumping, \Rightarrow Can reduce temperature to 70K in 20 min.

 \Rightarrow Can achieve 15 T with a 5-MW (battery) power supply.

Pump LN_2 completely out of magnet before pulsing, to minimize activation.

R&D for a 5-MW Battery Power Supply

Optical Diagnostics

Possible Sites of the Beam/Jet/Magnet Test

E-951 has existing setup in the BNL A3 line – but beam may be no longer available there.

J-PARC 50-GeV fast-extracted beam: (LOI 30, Jan 21, 2003)

CERN PS transfer line: CERN-INTC-2003-033 (Oct 23, 2003)

