An R&D Program for Targetry at a Muon Collider

K.T. McDonald *Princeton U.* August 7, 1998

U.S. Department of Energy, Division of High Energy Physics

http://puhep1.princeton.edu/mumu/target/

Targetry Challenges

To achieve useful physics luminosity, a muon collider must produce about $10^{14} \mu/sec$.

- \bullet > 10¹⁵ proton/sec onto a high-Z target.
- \bullet Capture pions of $P_\perp \lesssim 200$ MeV/ c in a 20-T solenoid magnet.
- Transfer the pions into a 1.25-T-solenoid decay channel.
- Compress π/μ bunch energy with rf cavities and deliver to muon cooling channel.

Targetry Challenges, Cont'd

- Proton beam power ≈ 4 MW; 400 kW deposited in target.
- To minimize pion absorption, cannot cool target by thermal bath.
- Radiative cooling is inadequate.
- $\bullet \Rightarrow$ Move target material away from beam and cool remotely.
- Even so, target must survive radiation damage (10-100 dpa/year), and the thermal shock of 30 kJ/pulse (\approx 30 J/gm) at 15 Hz.

A moving solid target is very awkward (backup solution).

Pipes with liquid metal (as in future neutron spallation sources) won't survive the pressure wave of thermal shock.

A **free liquid metal jet** is presently the preferred option.

Will it work? Need a **Targetry R&D Program**.

ISOLDE Liquid Targets Damaged by Short Pulses

Cracks developed at braised joints and lead sprayed out.

R&D Issues

- 1-ns beam pulse \Rightarrow shock heating of target.
	- **–** Resulting pressure wave may disperse liquid (or crack solid).
	- **–** Damage to target chamber walls?
	- **–** Magnetic field will damp effects of pressure wave.
- Eddy currents arise as metal jet enters the capture magnet.
	- **–** Jet is retarded and distorted, possibly dispersed.
	- **–** Hg jet studied at CERN, but not in beam or magnetic field:

High-speed photographs of mercury jet target for CERN-PS-AA. (laboratory test)
4,000 frames per second, Jet speed: 20 ms⁻¹, diameter: 3 mm, Reynold's Number: >100,000

- Targetry area also contains beam dump.
	- **–** Need 4 MW of cooling.
	- **–** Harsh radiation environment for magnets and rf.

An R&D Program for Targetry

at a Muon Collider

A Proposal to the BNL AGS Division

David Brashears,*^h* Kevin Brown,*^b* Michael Cates,*^h* John Corlett,*^f* Adrian Fabich,*^d* Richard C. Fernow,*^b* Charles Finfrock,*^b* Yasuo Fukui,*^c* Tony A. Gabriel,*^f* Juan C. Gallardo,*^b* Michael A. Green,*^f* George A. Greene,*^b* John R. Haines,*^h* Jerry Hastings,*^b* Ahmed Hassanein,*^a* Colin Johnson,*^d* Stephen A. Kahn,*^b* Bruce J. King,*^b* Harold G. Kirk,*b,*¹ Jacques Lettry,*^d* Vincent LoDestro,*^b* Changguo Lu,*ⁱ* Kirk T. McDonald,*i,*² Nikolai V. Mokhov,*^e* Alfred Moretti,*^e* James H. Norem,*^a* Robert B. Palmer,*^b* Ralf Prigl,*^b* Helge Ravn,*^d* Bernard Riemer,*^h* James Rose,*^b* Thomas Roser,*^b* Joseph Scaduto,*^b* Peter Sievers,*^d* Nicholas Simos,*^b* Philip Spampinato,*^h* Iuliu Stumer,*^b* Peter Thieberger,*^b* James Tsai,*^h* Thomas Tsang,*^b* Haipeng Wang,*^b* Robert Weggel,*^b* Albert F. Zeller,*^g* Yongxiang Zhao*^b*

> *^aArgonne National Laboratory, Argonne, IL 60439 b Brookhaven National Laboratory, Upton, NY 11973 c University of California, Los Angeles, CA 90095 ^dCERN, 1211 Geneva, Switzerland ^eFermi National Laboratory, Batavia, IL 60510 ^fLawrence Berkeley National Laboratory, Berkeley, CA 94720 ^gMichigan State University, East Lansing, MI 48824 ^hOak Ridge National Laboratory, Oak Ridge, TN 37831 i Princeton University, Princeton, NJ 08544*

¹Project Manager. Email: kirk@electron.cap.bnl.gov ²Spokesperson. Email: mcdonald@puphep.princeton.edu To be submitted Sept. 1, 1998.

Studies to be performed in the BNL AGS F.E.B. U-line, and at the National High Magnetic Field Laboratory.

Goals

Long Term: Provide a facility to test key components of the front-end of a muon collider in realistic beam conditions.

Near Term (1-2 years): Test effects of intense, short proton pulses and magnetic fields on liquid metal targets. (Change target technology if encounter severe difficulties.)

Mid Term (3-4 years): Add 20-T magnet to liquid target tests; Test 70-MHz rf cavity $(+ 1.25-T$ magnet) downstream of target; Characterize pion yield.

The 8 Steps in the R&D Program

- 1. Simple tests of liquid (Ga-Sn) targets in the AGS FEB U-line.
- 2. Test of liquid jet entering a 20-T magnet (20-MW cw Bitter magnet at the National High Field Magnet Laboratory).
- 3. Test of liquid jet in the FEB U-line (without magnet).
- 4. Add 20-T pulsed magnet (4-MW peak) to the FEB U-line.
- 5. Add 70-MHz rf cavity downstream of target in FEB U-line.
- 6. Surround rf cavity with 1.25-T magnet.
- 7. Characterize pion yield from target + magnet system in FEB U-line.
- 8. Ongoing simulation of the thermal hydraulics of the liquidmetal target system.

Begin with Ga/Sn Liquid-Metal Alloy

Eutectic Ga/Sn alloy melts at 20C. Density = 6 g/cm^3 .

Easy to make and handle; very low viscosity.

Overall Configuration of the Experiment

What Next?...

Heavier, higher-Z liquid metals: mercury, lead/bismuth...

Systems issues for long life, high rep. rate.

Hybrid DC 20-T magnet: superconducting outer, resistive inner.

Superconducting magnets around rf cavities.

Budget and Schedule by Fiscal Year

(In units of 1M\$)

