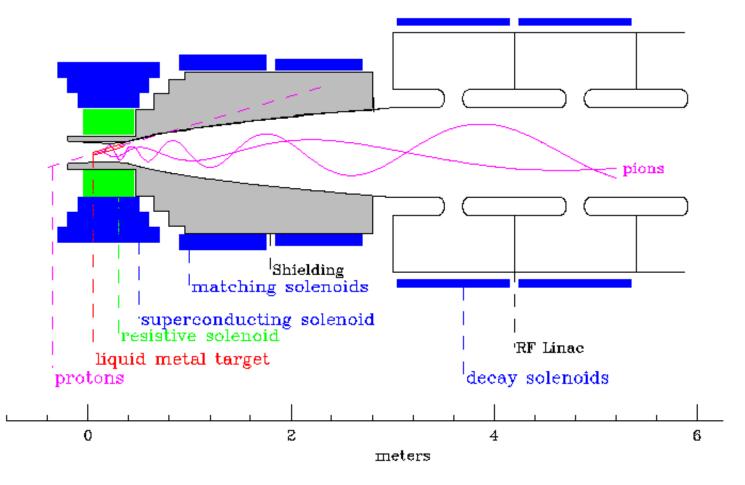
An R&D Program for Targetry at a Muon Collider

K.T. McDonald*Princeton U.*August 7, 1998


U.S. Department of Energy, Division of High Energy Physics

http://puhep1.princeton.edu/mumu/target/

Targetry Challenges

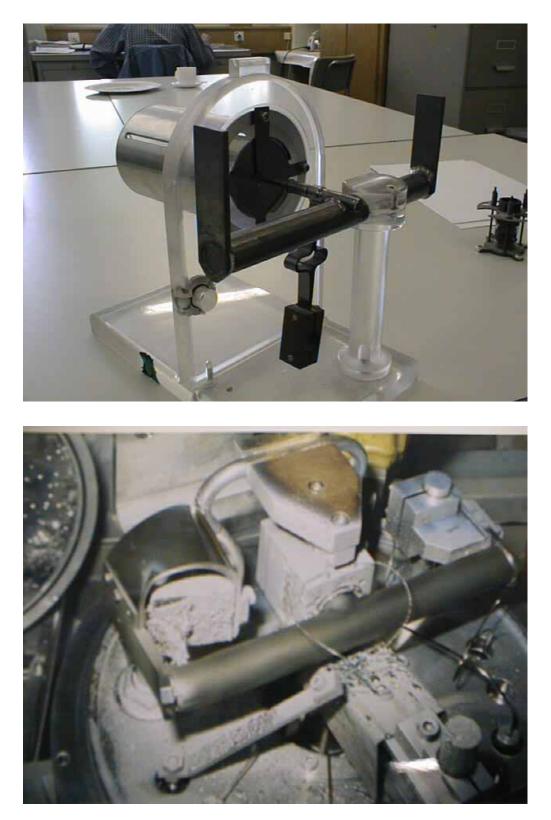
To achieve useful physics luminosity, a muon collider must produce about $10^{14} \ \mu/\text{sec.}$

- > 10^{15} proton/sec onto a high-Z target.
- Capture pions of $P_{\perp} \lesssim 200 \text{ MeV}/c$ in a 20-T solenoid magnet.
- Transfer the pions into a 1.25-T-solenoid decay channel.
- Compress π/μ bunch energy with rf cavities and deliver to muon cooling channel.

Targetry Challenges, Cont'd

- Proton beam power ≈ 4 MW; 400 kW deposited in target.
- To minimize pion absorption, cannot cool target by thermal bath.
- Radiative cooling is inadequate.
- $\bullet \Rightarrow$ Move target material away from beam and cool remotely.
- Even so, target must survive radiation damage (10-100 dpa/year), and the thermal shock of 30 kJ/pulse (≈ 30 J/gm) at 15 Hz.

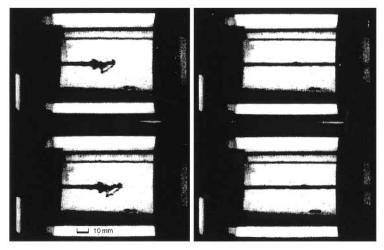
A moving solid target is very awkward (backup solution).


Pipes with liquid metal (as in future neutron spallation sources) won't survive the pressure wave of thermal shock.

A free liquid metal jet is presently the preferred option.

Will it work?

Need a Targetry R&D Program.


ISOLDE Liquid Targets Damaged by Short Pulses

Cracks developed at braised joints and lead sprayed out.

R&D Issues

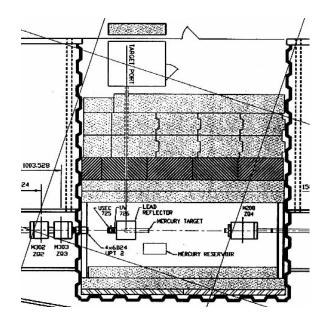
- 1-ns beam pulse \Rightarrow shock heating of target.
 - Resulting pressure wave may disperse liquid (or crack solid).
 - Damage to target chamber walls?
 - Magnetic field will damp effects of pressure wave.
- Eddy currents arise as metal jet enters the capture magnet.
 - Jet is retarded and distorted, possibly dispersed.
 - Hg jet studied at CERN, but not in beam or magnetic field:

High-speed photographs of mercury jet target for CERN-PS-AA. (laboratory test) 4,000 frames per second, Jet speed: 20 ms⁻¹, diameter: 3 mm, Reynold's Number: >100,000

- Targetry area also contains beam dump.
 - Need 4 MW of cooling.
 - Harsh radiation environment for magnets and rf.

An R&D Program for Targetry

at a Muon Collider


A PROPOSAL TO THE BNL AGS DIVISION

David Brashears,^h Kevin Brown,^b Michael Cates,^h John Corlett,^f Adrian Fabich,^d Richard C. Fernow,^b Charles Finfrock,^b Yasuo Fukui,^c Tony A. Gabriel,^f Juan C. Gallardo,^b Michael A. Green,^f George A. Greene,^b John R. Haines,^h Jerry Hastings,^b Ahmed Hassanein,^a Colin Johnson,^d Stephen A. Kahn,^b Bruce J. King,^b Harold G. Kirk,^{b,1} Jacques Lettry,^d Vincent LoDestro,^b Changguo Lu,ⁱ Kirk T. McDonald,^{i,2} Nikolai V. Mokhov,^e Alfred Moretti,^e James H. Norem,^a Robert B. Palmer,^b Ralf Prigl,^b Helge Ravn,^d Bernard Riemer,^h James Rose,^b Thomas Roser,^b Joseph Scaduto,^b Peter Sievers,^d Nicholas Simos,^b Philip Spampinato,^h Iuliu Stumer,^b Peter Thieberger,^b James Tsai,^h Thomas Tsang,^b

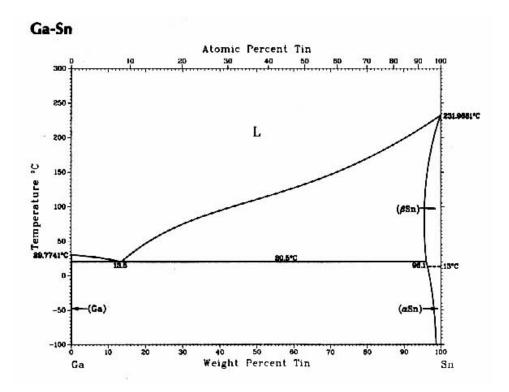
^aArgonne National Laboratory, Argonne, IL 60439
^bBrookhaven National Laboratory, Upton, NY 11973
^cUniversity of California, Los Angeles, CA 90095
^dCERN, 1211 Geneva, Switzerland
^eFermi National Laboratory, Batavia, IL 60510
^fLawrence Berkeley National Laboratory, Berkeley, CA 94720
^gMichigan State University, East Lansing, MI 48824
^hOak Ridge National Laboratory, Oak Ridge, TN 37831
ⁱPrinceton University, Princeton, NJ 08544

¹Project Manager. Email: kirk@electron.cap.bnl.gov ²Spokesperson. Email: mcdonald@puphep.princeton.edu To be submitted Sept. 1, 1998.

Studies to be performed in the BNL AGS F.E.B. U-line, and at the National High Magnetic Field Laboratory.

Goals

Long Term: Provide a facility to test key components of the front-end of a muon collider in realistic beam conditions.

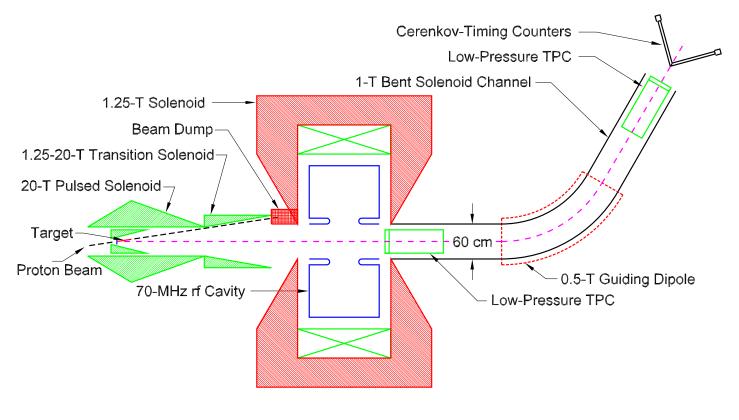

Near Term (1-2 years): Test effects of intense, short proton pulses and magnetic fields on liquid metal targets.(Change target technology if encounter severe difficulties.)

Mid Term (3-4 years): Add 20-T magnet to liquid target tests; Test 70-MHz rf cavity (+ 1.25-T magnet) downstream of target; Characterize pion yield.

The 8 Steps in the R&D Program

- 1. Simple tests of liquid (Ga-Sn) targets in the AGS FEB U-line.
- 2. Test of liquid jet entering a 20-T magnet (20-MW cw Bitter magnet at the National High Field Magnet Laboratory).
- 3. Test of liquid jet in the FEB U-line (without magnet).
- 4. Add 20-T pulsed magnet (4-MW peak) to the FEB U-line.
- 5. Add 70-MHz rf cavity downstream of target in FEB U-line.
- 6. Surround rf cavity with 1.25-T magnet.
- Characterize pion yield from target + magnet system in FEB U-line.
- 8. Ongoing simulation of the thermal hydraulics of the liquidmetal target system.

Begin with Ga/Sn Liquid-Metal Alloy



Eutectic Ga/Sn alloy melts at 20C. Density = 6 g/cm^3 .

Easy to make and handle; very low viscosity.

Overall Configuration of the Experiment

What Next?...

Heavier, higher-Z liquid metals: mercury, lead/bismuth...

Systems issues for long life, high rep. rate.

Hybrid DC 20-T magnet: superconducting outer, resistive inner.

Superconducting magnets around rf cavities.

Budget and Schedule by Fiscal Year

(In units of 1M\$)

Program Step	FY99	FY00	FY01	Total
1. Simple beam tests	0.12	_	_	0.12
2. Jet in 20-T magnet	0.08	_	_	0.08
3. Jet in beam	0.20	0.20	_	0.40
4. Add 20-T pulsed magnet	0.20	≈ 0.60	_	≈ 0.80
5. Add 70-MHz rf cavity	0.15	≈ 0.80	_	≈ 0.95
6. Add 1.25-T magnet	0.05	0.15	≈ 1.00	≈ 1.20
7. Characterize pion yield	0.05	0.10	≈ 1.85	≈ 2.00
8. Simulations	0.15	0.15	0.15	0.45
Total	1.00	≈2.00	≈3.00	$pprox\!6.00$