

Development of High Powered Target Systems for the **Spallation Neutron Source and the Muon Collider/Neutrino Factory**

T. Gabriel, J. Haines, B. Riemer, P. Spampinato N. Mokhov, T. McManamy

April 2002

The Spallation Neutron Source

- • **World's most po w erful neutron science facility.**
- •**\$1.4B project**
- •**Completion in 2006**
- • **Pulsed proton beam from Linac/Ring creates neutrons by spallation reaction with mercury target.**

• **Partnership of six laboratories under direction of the ORNL SNS Project Office.**

SNS Basic Parameters List

•**Maximum number of neutron scattering instruments 2 4**

Excellent Progress at the Construction Site

The Accelerator Configuration will include a SuperConducting RF S ystem

The Accelerator Configuration has been established and the high-energ y end of the Linac will feature a SuperConducting RF System.

The SNS High Pow er Target Building Is Becoming a Realit y Backscattering Spectromet er Powder DiffractometerMagnetism & Liquids ReflectometersPROTONS**High Resolution Chopper Spectromet er Proposed Spin Echo Spectromet er and FundamentalPhy sics Instruments**

All of the supporting piles have been placed into the ground, rebar is being placed, and concrete is being poured.

Cold Neutron Chopper Spectromet er

SANS

SNS Experimental Facilities Oak Ridge ⁶

To be Built b y SNS Project

To be Built b y IDT s

Proposed by IDTs

Areas for User and Instrument

Support

Monolith Region Without Target Cart and Process Bay Equipment in Hot Cell with Target Cart Extracted

SNS Experimental Facilities

SPALLATION

- • **Steady state po w er handling**
	- –Cooling of target/enclosure windo w - wettability
	- $\,$ Hot spots of Hg caused by recirculation around flow baffles
- \bullet **Demonstration of ke y s ystems:**
	- Mercury loop operation
	- Remote handling
- •**Radiation damage to structural materials**
- •**Compatibility betw e en Hg and other target s ystem materials**
- • **Thermal Shock**
	- $-$ Pressure pulse loads on structural material
	- Effects on bulk Hg flo w

Mercury Target Development Has 3 Major Facilities at ORNL and Utilizes the Accelerator Facilities at LANL/WNR and BNL/AGS

- Final CFD benchmark
- Verify Hg process equipment
- Operational exp erience

•Wettability

• Design data for target window

SPALLATION NEUTRO

•Corrosion/erosion test

SNS Experimental Facilities *COAK Ridge* 9

Potential Pitting Problem Addressed in Recent Tests

- • **Pitting of stainless steel surfaces in contact wit h Hg observ ed b y JA E RI team in off-line mechanical pressure pulse tests.**
	- **Is this r elevant to loads induced by pulsed proton beam?**
- • **T w o Hg targets w e r e exposed to 200 pulses each during July 23-25 tests at L ANSCE-WNR facility.**
	- **Currently examining internal surfaces of target and test coupons to look for pitting.**
	- – **Energ y density same as SNS at 2 MW (2.8 x 1013 protons/pulse, 800 MeV protons, beam** σ **~ 10 mm).**

SNS Experimental Facilities by the contract of the contract of the Cak Ridge *Oak Ridge*

Configuration for WNR "Blue Room" Tests

• **These tests w ere originally designed f or helping calibrate models for predicting strain.**

800 MeV proton beam duct

C ylindrical target with t hin diaphragms (instrumented wit h fiber-optic strain sensors)

A microphone

Large Pits Were Found Near the Center of the Thin Diaphragm s

Results from Initial Visual Inspection of December 2001 Test Targets

- • **Rectangular target with small Hg la y er in front.**
	- – $-$ Large pits on both surfaces of small Hg layer.
	- No large pits on both walls of bulk Hg region.
	- –Possible causes:
		- Acoustic impedance mismatch at steel/air interface causes cavitation in first Hg layer/protects bulk Hg region.
		- Non-axisymmetric shape eliminates focusing.

•**C ylindrical targets.**

- – $-$ Large pits found on annealed 316SS end plate of conical section.
- – Large pits found on thick Stellite, Nitronic 60 (20% cold-worked), and annealed 316SS end plates.
- No large pits on thick, cold worked (50%) 316SS end plate that had Kolsterizing treatment.
- Combination of small strain, stronger/harder substrate, and hard surface treatment eliminate large pits!

T wo More Test Campaigns Will Address the Pitting Issue in 2002

- \bullet **ASTE tests (collaboration wit h ESS and Japanese) at BNL will examine coating options during April 1-7, 2002 tests.**
	- Bare annealed 316SS with and without a gas layer at the top of the target.
	- CrN coating on 316SS.
	- Non-crystalline metallic glass coating treatment on 316SS (INEEL process).
- • **WNR tests planned for July 2002 will examine:**
	- Pitting threshold.
	- Simple mitigation schemes such as providing a water layer instead of a Hg layer in the front of the target.
	- Any schemes found to be promising after further examining December 2001 specimens.

Neutrino Factory /Muon Collider Target/Capture Facilit y

A Conceptual Design for a Target and Support Facility has been Developed for the Facility

- • **Hg Jet Target (Graphite target).**
- • **16-24 GeV protons, 1-4 MW on Target.**
- •**H y b rid solenoid system** *(National High Magnetic Field Laboratory).*
- •**Deca y channel.**
- •**Nuclear shielding.**
- •**Remote handling.**

Tracks E>20 MeV

SNS Experimental Facilities *COAK Ridge COAK Ridge COAK Ridge*

 $\mathbf{1}$

x
Lz

The Graphite Target is a Passively Cooled Rod-Like Structure

- • **It is coaxial with the proton beam, but 50 milliradians to the magnetic axis of the deca y channel (***Mokhov***).**
- • **Supported on graphite spokes.**
- •**• Radiates to a watercooled stainless steel support tube (15 cm diam).**

Optical Strain Sensor Technique Was Validated On Simple Graphite Rod Test

Target – Sublimation

•At 2X the average power deposition, recession rate = 5 mm/d

•**Other Issues**

- Examine irradiation database since radiation damage may be the life limiting mechanism.
- Evaluate using C-C composites which incorporate carbon fibers within a graphite matrix.
	- **Improved thermal-mechanical properties and perhaps** increased resistance to irradiation damage.

Neutronic Issues for the Neutrino Factory /Muon Collider Target/Capture Facility

- \bullet **Guess w hat transport code Mokhov used!**
- •π **/** µ **p roduction.**
- •**Shielding and component lifetime.**
- •**Heat levels.**

24 GeV proton beam (67 mrad) on a Hg jet (100 mrad)

Yield per proton at $z=36$ m:

- $\pi^+ + K^+ + \mu^+(0.05 < p < 0.8 \text{ GeV}/c) = 0.7108$
- $\pi^- + K^- + \mu^-(0.05 < p < 0.8 \text{ GeV}/c) = 0.6724$
- $\pi^+ + K^+(0.025 < E < 0.225 \text{ GeV}) = 0.0211$
- $\pi^- + K^-(0.025 < E < 0.225 \text{ GeV}) = 0.0192$
- $\mu^+(0.025 < E < 0.225$ GeV) = 0.3760
- $\mu^-(0.025 < E < 0.225 \text{ GeV}) = 0.3704$

SPALLATIO

75.317

147.333

HEAT LOAD FOR 979.2 kW BEAM

- Mercury 119.181 kW
- \bullet 1-cm inner vessel 113.873 kW
- WCW shielding 489.118 kW
- Cu-water shielding 12.939 kW
- Resistive coils 9.910 kW
- \bullet SC1-SC2 1.256 kW
- \bullet SC3-SC13 1.385 kW

Leakage

Others $+$ "invisible"

- \bullet **A concept design for the neutrino factory** *target support facility* **was com pleted.**
- \bullet **Preliminary calculations demonstrate feasibility of using a passively cooled graphite target.**
- • **The facility arrangement is based on w ork done for the SNS.**
- • **A concept design for high field and low field solenoids demonstrates feasibilit y of resistive/superconducting magnets that meet field-on-axis requirements (NHMFL).**
- • **Near term/longer term R&D is proposed to address thermal, mechanical, and radiation issues for graphite.**

- Complete MARS model of a neutrino factory target/capture system with a tilted proton beam was built and its performance studied for tilted solid carbon target and mercury jet
- Muon beam is formed: $\approx 0.37 \mu/p$ of each sign at 24 GeV on Hg
- Sophisticated shielding designed, nicely protects normal and SC coils, reducing radiation loads in the hottest spot of high-field SC coil to $F \approx 10^{18}$ cm⁻²yr⁻¹, $P \approx 0.4$ mW/g, and $D \approx 6$ MGy/yr, providing \geq 15-year lifetime at 1 MW for all critical components
- Maximum residual dose rates exceed 1 kSv/hr = 0.1 MRem/hr after one day cooling, requiring remote control and robotics for inner parts of the system