IFMIF a challenging highintensity accelerator

20th ICFA Advanced Beam Dynamics Workshop High Intensity High Brightness Hadron Beams Fermilab April 8 - 12, 2002

a joint project of EU, Japan,the Russian Federation and the United States of America under the auspices of the International Energy Agency (IEA)

In Europe, under the auspices of EFDA, contract EFDA 2000/10

Description

IFMIF : accelerator-based D-Li neutron source

- production of an intense flux of high energy neutrons
- sufficient irradiation volume for realistic testing of materials and components up to about a full lifetime of their anticipated use in DEMO and beyond.
- Must survive exposure to damage from neutrons with energy spectrum peaked near 14 MeV with annual doses of ~20 dpa (displacement per atoms), and total fluences of ~200 dpa.

Neutron Flux	\ge 2 MW/m ² (@ 500 cm ³)	Test facility 97.5%
Operation Availability	70 %	Target facility 95.0%
D ⁺ Beam Current	250 mA (CW, 2 x 125 mA)	Accelerator 88.0%
D+ Energy	40 MeV	Conventional 99.5%
D ⁺ Beam Size	200 mm (width) x 50 mm (height)	Control (S 00 5
Li Jet Thickness	19, 25 mm (resp. for 32, 40 MeV D+)	
Li Jet Width	260 mm	Total (product) 80.7%
Li Jet Velocity	10-20 m/s	online/year 70%

IFMIF SCHEMATIC LAYOUT

Accelerator Team

*Thanks to many participant in many countries:

- Bob Jameson from USA
- Morst Klein and his IAP-Frankfurt team
- Masayoshi Sugimoto and his JAERI Japan team
- AES people and specially Tim Myers, John Rathke and Chris Piaszczyk (do not try to pronounce his name !)
- CEA-Saclay team

Top level specifications

<u>Requiremen</u> t	Specification	<u>Details</u>	Comments
Particle Type	D+	H2+ for testing to avoid activation	
Accelerator Type	RF Linac		
RF Frequency	175 MHz		
Output Energy	40 MeV	5 MeV RFQ, 5-40 MeV DTL	32 & 36 MeV Reqm't deleted
Output Current	250 mA	2 accelerators	3 Stages: Phase 1 = 50 mA (1 Accelerator), Phase 2 = 125 mA (1 Accelerator), Phase 3 = 250 mA (2 Accelerators)
Beam Distribution	rectangular flat top	20 cm horizontal x 5 cm vertical on the target	
Output Energy Dispersion	Natural ∆E of beam		Was +/- 0.5 FWHM at CDA
Duty Factor	100%	CW	Pulsed tune-up and start-up
Availability	>0.88 %	during scheduled operation fo 7600 h per annum	>80.7% for overall facility
Maintainability	Hands-on	up to the final bend ir HEBT with local shielding as required	design not to preclude capability for remote maintenance
Design Lifetime	40 years		

Cost saving done in 1999

Accelerator facility

B⁺ beam current generated by two accelerator modules operating in parallel. RAM is a major concern

- **#** The two D⁺ beams converge on the Lithium target
- 2 modules composed of

△ D⁺ source, 150 mA CW @ 95keV

≥ RFQ up to 5MeV, CW, 125 mA

DTL up to 32 or 40 MeV

☑ High Energy Beam Transport

IFMIF needs 12×2 1MW rf station @ 175MW

Bevelopment and testing of a RF system was identified as the highest impact development item
 The diacrode will deliver 1 MW CW @ 175 MHz
 Monitoring of long diacrode test tube (1000h) is under going with success (90hours up to now, CW @ 200MHz, 1MW)

High beam power diagnostics

∺IFMIF:

- △about 15 kW after the source
- △625 kW after the RFQ
- △5 MW in the HEBT after DTL
- Iow energy (40 MeV) → deposited in any interceptive diagnostics
- New diagnostics (light analyses, SC, emittance EMU...)

Phasing - Schedule

- KEP (Key Element technology Phase)
- # EVEDA (Engineering Validation, Engineering Design Activities)
 5 years, could start in 2004 (FPF6 start in 2003)
 - Need a central design team and a site
 - Prototype?

Full Performance Accelerator through the first DTL Tank
 IFMIF Designs have been pursued at Frankfurt and Saclay
 Best effort to integrate the "most favorable" design into the IFMIF prototype

Highly depend on ITER decision

Hore or less ready to build with a phase I completion in 2010 (50mA)

IFMIF Prototype concept

Significant Ion Source Progress

🔀 CEA Saclay Source

- This ECR source produced 95 kV, 70 mA protons with 99.95% availability over 100 hours and 114mA with 99.8% availability over 160 hours (1 spark per day, MTBF=23.1h)
- Since the design has the RF window behind the bend, there is no electron erosion no need to change it at all.
- The source produced deuteron beam
 - Is a minimize neutron production → pulsed running mode : 2ms/s (d,D reaction)
 - Experiment done using the 120 mA proton extraction system
 - Coherent measurement gives us:
 - I > 130 mA (100 kV)
 - $D^+ > 96$ % and $D_2^+ < 4$ %
 - LEBT transparency = 75 %
 - rms beam noise = 1.2 % (19 kHz)

⊠Up to 170 mA (267 mA/cm²)!

SILHI performance in D+

Significant Ion Source Progress

- Harankfurt Source reached also IFMIF design current
 - The volume source produced 200 mA protons (corresponding to 140 mA D⁺) in CW mode as well as in pulsed mode (1 msec pulse length, 50 Hz repetition rate) with excellent beam quality and low noise

Parallel testing of 3 ion source candidates on same test stand (same beam extraction system and instrumentation) - at JAERI

#4-vanes RFQ is the reference design (based on LEDA already achieved performances and IPHI developments)

#IAP evaluates the 4-rod type RFQ

LEDA RFQ (LANL)

IPHI RFQ (CEA-Saclay)

20th ICFA - April 8 - 12, 2002 Fermilab

Robin FERDINAND - IFMIF

RFQ Beam dynamics

Parameters	Values	
length	12,498 m	
Voltage	106 kV	
Peak field	1,82 kp	
Minimum aperture	4,415,83 mm	
Mean aperture	5,56 5,83 mm	
Modulation	1 1,52	
Frequency	175 MHz	
Synchronous phase	-9035,25 ř	
Input current	130 mA	
Input norm. rms ε	0,25 π .mm.mrad	
α	2,4	
β	14,069 cm/rad	
Injection energy	0,095 MeV	
Output energy	5 MeV	

Parameters	Values
Total output current	124,7 mA
Useful output current	124,2 mA
Output norm. rms εx	$0,27 \pi$.mm.mrad
αχ	-2,56
βx	46,83 cm/rad
Output norm. rms ε y	$0,27 \pi$.mm.mrad
αy	1,55
βy	24,61 cm/rad
Output rms εz	0,18 deg.MeV
αz	0,01
βz	1225 deg/MeV

Table 2: Main results.

<== Saclay RFQ Design Parameters

Table 1: Main parameters

Frankfurt EP RFQ Design Parameters ==>

		_
Structure parameter	175 MHz RFQ	
Ion	D^+	
Design	EP (Jameson)	
Number of macroparticles n	100,000	
Input distribution	4d Waterbag	
Frequency f [MHz]	175	
Win/Wout [MeV]	0.1 / 5.0	
Voltage V [MV]	0.111 - 0.151	
Kilpatrick factor b	1.7	
RMS _{in} cells	4	
RMS _{out} cells	Crandall cell	
Cells / Lenght [m]	652 / 12.33	-
Phase #/º/	-9035.27	
Input current [mA]	140	
Output current [mA]	130.62	
Transmission	93,3%	
Modulation m	1.00 - 1.73	
Input-/Output	0.020 / 0.022	
s ^{N,RMS} trans [cm≯mrad]		
Input-/Output	0/0.044	
^{N,RMS} [cm×mrad]		

Table of the 1.7 KP IFMIF RFQ from Jameson

SACLAY design using TOUTATIS codes

CRA Secley - DSM/DA/DRA/SRI NGOOD : 47654 / 47654 I=123.9 mA X-Xp [mm-mrad] Y-Yp [mm-mrad] 30 30 20 20 10 -10-10 -20 -20 -30 -30 -40-2 ń -2 Ó Z-dp/p [mm-dp/p] X-Y [mm-mm] 15 10 -5-10 -15 20 -20 -10 ń 10 -4 -2 Ó Ź Xmax = 5.478 mm Ymax = 3.310 mm Zmax =14.636 mm dp/pmax = 10.001 mm

Main parameters

Emax	1.82 kp
Voltage	106 kV
Length	12.5 m
Frequency	175 Mhz
Inputrms E (π .mm.mrad)	0.25
Input current (mA)	130
Output Tr. E (π .mm.mrad)	0.27
Output Lg. E (π .mm.mrad)	0.45
Output current (mA)	124
Transmission	95.9%

Saclay Matching Section Design

Trace_Win - CEA/DSM/DAPNIA/SEA

4 quadrupoles and 2 buncher cavities are used, the last quad being the first of the DTL

QF1:66 T/m, Magnetic length=5.6 cm QD2: 82 T/m, Magnetic length=5.6 cm QF3 : 77 T/m, Magnetic length=5.6 cm OD4 : 59 T/m, Magnetic length=5.6 cm

Buncher 1->0.178 MV/m Phase –40° Length :12.9

Buncher 2->0.217 MV/m Phase -40° Length :12.9

Buncher working at 175MHz.

Line Length except last quad : 67.33 cm:

4 cm 20.315 cm 6 cm 20.215 cm

Matching Section System Layout - Saclay Design

Saclay DTL - 2 Tubes / Tank Design

First cell

In order to optimize the global efficiency, we support the idea of using 2 diacrodes per tank. It gives the following design:

Nbr tank	5
Nbr cell	117
Length (m)	26.89
Total length (m)	28.9
Power (kW)	6053
Nbr rf tubes	9

It can be noticed that:

- 1. There is a gain of one tube, leading to a cost saving.
- 2. There are also only 4 matching between tanks, instead of 9...
- 3. There are less cells, since there are less matching sections and therefore less phase losses (Matching is done with the synchronous phase, and lead to losses in term of acceleration)
- 4. A small gain on the total length is observed

Tank	Nbr cell	Length (m)	Power (kW)	Efficiency (%)	Energy (MeV)
1	32	4.64	678	0.74	9.31
2	28	5.61	1367	0.71	17.08
3	22	5.59	1358	0.72	24.86
4	19	5.66	1367	0.72	32.64
5	16	5.39	1283	0.72	40.07

The first tank uses only one tube (it is already a long tank), while the others use two. Again one cell is removed to stay around the 40 MeV goal.

It can be notice that either the first or the last tank will use only on tube, depending on the energy demand at the end of the linacs (if 32.64 MeV is too low...).

Including Left Wall Including 25% marging on Power Including Stem freq. Shift and Power

Lc = 12.9046 cm
D = 53.712 cm (inner tank diameter)
Rt = 9.6 cm
$R_{\rm b} = 1.25 \text{ cm}$
$R_i = 0.4 \text{ cm}$
$R_{c} = 0.7 \text{ cm}$
Ro = 0.4 cm
F = 0.4 cm
$\alpha_{\rm f} = 18.1 \text{ degres}$
gsl = 0.07568
Freq(With stem) : 175 MHz
Eo : 0.5130 MV/m
Emax : 8.036311 MV/m
Kilp : 0.57509
GainE : 0.041911 MeV
T: 0.89531
Zs : 18.184 MOhme/m
ZsT2:14.576
Phase Synch : -45 deg
Copper power : 1.8676 kW

Quadrupole Gradient: 75.6 T/m Quadrupole Length: 7.8 cm Quadrupole Radius: 6.7 cm

Saclay DTL - beam dynamics

The input beam particle distribution is given by TOUTATIS simulations in the IFMIF RFQ

Particle density probability along the DTL + matching line

Saclay DTL prototype design

- IPHI 4-cell hot model prototype is being built
- # Test the CW, high current DTLs technological feasibility of quadrupole magnet design and fabrication, vacuum problems, cooling, mechanical aspects, etc
- How the state of the state o
- Being even more demanding than the one used in the present IFMIF design

	IPHI		IFMIF	
	1 st quad	37 th quad	1 st quad	60 th quad
Gradient (T/m)	64.36	82.39	44	59
Gradient × Magnetic length (T)	3.67	4.70	3.3	4.4
Maximum length (mm)	48	.0	70.	.0
Maximum outer diameter (mm)	140.0		15	2
Minimum aperture (mm)	16.0		25	5

	IPHI	IFMIF
Length (mm)	61.76	97.32
External diameter (mm)	170.00	180
Bore diameter (mm)	13.00	25
End cap face angle (°)	4.21	11

20th ICFA - April 8 - 12, 2002 Fermilab

DTL prototype

- Results and Grift tube designed by AES and Saclay
- **#** Test to be done soon in CERN
- Methods for Quadrupoles, Drift tube and tanks working in CW mode

	IPHI	IFMIF
Misalignment	± 51 μm	± 100 μm
Transverse rotation	± 0.5 deg	± 0.25 deg
Longitudinal rotation	$\pm 0.3 \deg$	± 0.25 deg
Gradient	± 0.5 %	± 1%

Quadrupole tolerances

20th ICFA - April 8 - 12, 2002 Fermilab

Robin FERDINAND - IFMIF

IAP Frankfurt - DTL

Classical DTL and IH DTL studies

Structure Parameter	Alvarez	
Mass number A	2 (D ⁺)	
Charge number q	1	
Current I	125.0	mA
Frequency frf	175.0	MHz
Focusing structure	FODO	
Number of tanks	8	
Average tank length L_T	3,66	m
Drift between tanks $I\beta\lambda$	17.16-33.87	cm
Average total power loss per tank $P_{Cu+BeamT}$	0.726	MW
Average Cu power loss per meter PCw/L	0.0474	MW/m
Injection energy Win	5.0	MeV
Extraction energy Wout	40.0	MeV
Total energy gain per meter W _{tot/L}	1.12	MeV/m
Number of cells Ne	124	
Cell lenght $\beta \lambda$	12.2 - 34.7	cm
Quadrupole lenght L_q	7,00	cm
Total linac lenght L _{tot}	31.19	m
Electric field amplitude Eo	1.7	MV/m
Effective electric field amplitude E_0T	1.34 - 1.43	MV/m
Synchronous phase ϕ_s	-30.0	deg
Phase before and after drift de	-35.045.0	deg
Rebunching cells per tank nrb	4	
Aperture radius ro	1.5 - 2.0	cm
Magnetic gradient G	7.00 - 2.40	kG/cm
Magnetic surface field strength B	1.00 - 0.48	Т
Gap lenght gl	1.77 - 8.84	cm
Effective shunt impedanz ZT ²	33,90 - 45,18	-MΩ/m
Max Kilpatrick factor b	0.90	
Input distribution	6d Wb	
Input- / Output RMS Entrans	0.040 / 0.041	cm×mrad
Input- / Output RMS Entrong	0.080 / 0.082	cm×mrad
Number of lattice periods n _{lat}	62	
Number of macroparticles n	50,000	
Transmission	100	%

Structure parameter	IH	
Mass number A	2 (D ⁺)	
Charge number q	1	
Current I	125.0	mA
Frequency frf	175.0	MHz
Focusing structure	FDF-DFD	
Number of tanks	10	
Average tank length L_T	1.97	m
Drift between tanks	45.00	cm
Average total power loss per tank	0,536	MW
Average Cu power loss per tank $P_{C_{ij}}$	0.095	MW
Average Cu power loss per meter P_{Gar}	0.0487	MW/m
Injection energy W.	5.0	MeV
Extraction energy W	40.0	MeV
Total energy gain per meter W	1.51	MeV/m
Number of cells N.	1.51	NIC V/III
Cell lenght B2/2	6.26 - 17.55	em
Triplet length L	19.4 - 35.0	cm
Total linac lenght L.	23 20	m
Effective electric field amplitude $F.T$	1.82 - 0.78	MV/m
Sunchronous phase in huncher &	-35.0	dea
Synchronous phase in ouriener ϕ_8	-55,6	ues
A parture redius a	1520	070
Aperture radius r ₀	6 55 - 4 76	hG/om
Magnetic gradient O	1.2 0.04	T KG/CIII
Gan lenght al	3.10 - 7.01	cm
Effective shunt impedenz TT^2	150.00 - 58.27	MO/m
Max Kilpatrick factor h	0.43	IVI52/111
Input distribution	4d+2d Hom	
Input distribution	-40+20 Hom	ana) (mana d
Input- / Output KIVIS $\varepsilon_{\text{trans}}$	0.03370.003	cin×mrad
Input- / Output KMS & long	0.07070.098	cm×mrad
Number of fattice periods <i>n_{lat}</i>	10,000	
Number of macroparticles n	10,000	0/
1 ransmission	100	70
IM-I)	11	

20th ICFA - April 8 - 12, 2002 Fermilab

Doppler effect based measurement

- # Emitted light focused on a slit, analyzed through a monochromator set @ 60° of the beam axis.
- **H** Recombination or dissociative recombination of H^+ , H_2^+ and H_3^+ particles at 95keV produce Balmer lines
- $\mathfrak{H}_{\alpha}, \mathfrak{H}_{\beta}$ or \mathfrak{H}_{γ} line analyzed
- **#** Allow uncorrelation of H_2^+ and H_3^+ effects
- 🔀 Test under different gas injection, beam energy
- 🔀 Comparison with electrical measurement to be made (difficult)
- 🔀 Most promising non interceptive measurement

20th ICFA - April 8 - 12, 2002 Fermilab

Robin FERDINAND - IFMIF

Doppler effect based measurement

- Systematic error as a function of the beam size
- **H** Easy measurement of both H^+ and H_2^+ species

20th ICFA - April 8 - 12, 2002 Fermilab

Robin FERDINAND - IFMIF