B(z) from Equations with Only One or Two Adjustable Currents

Robert J. Weggel; Magnet Optimization Research Engineering (M.O.R.E.), LLC; 1/5/2014

Figure 1 plots on-axis field profiles generated by an equation, analytically differentiable to arbitrary order, each of whose terms predicts the on-axis field from a component coil in a Target Magnet. For simplicity, coils typically are modeled by current sheets. Comparison of the blue and black curves of Fig. reveals that even a coil as radially thick as Superconducting Coil #1 can be modeled accurately by a single current sheet at its mean radius.

For simplicity, each of the seven designs of Fig. 1 employs no more than three current elements, all those downstream of $z \approx 5.4$ m being consolidated into a single current sheet. Design #1 uses only two elements—a main coil and a current sheet extending from 2.5 m all the way to 20 m. Coil parameters are tabulated below. B_∞ is the field that would be generated by a coil of identical current per unit length but of infinite length.

Design Number	#1	#2	#3	#4	#5	#6	#7
Desired field (a) $z = L = 5 m$ [T]	2.5	2.5	1.5	2.0	2.5	3.0	3.5
Inner radius a1 of coil #1 [m]	1.20	1.20	N/A	N/A	N/A	N/A	N/A
Outer radius a ₂ of coil #1 [m]	2.08	2.08	N/A	N/A	N/A	N/A	N/A
Mean radius a ₀ of coil #1 [m]	1.64	1.64	1.64	1.64	1.64	1.64	1.64
a ₀ of downstream coils [m]	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream end of coil #1 [m]	-2.35	-2.35	-2.35	-2.35	-2.35	-2.35	-2.35
Downstream end of coil #1 [m]	1.34	1.34	1.34	1.34	1.34	1.34	1.34
Upstream end of coil #2 [m]	2.50	2.50	2.50	2.50	2.50	2.50	2.50
Downstream end of coil #2 [m]	20.0	5.42	5.42	5.42	5.42	5.42	5.42
Upstream end of coil #3 [m]	N/A	5.427	5.427	5.427	5.427	5.427	5.427
Downstream end of coil #3 [m]	N/A	20.0	20.0	20.0	20.0	20.0	20.0
$j\lambda$ of thick-walled coil [A/mm ²]	18.01	18.06	N/A	N/A	N/A	N/A	N/A
B_{∞} of upstream current sheet [T]	N/A	N/A	20.07	20.07	20.07	20.07	20.07
B_{∞} of middle current sheet [T]	N/A	1.684	0.623	1.153	1.684	2.214	2.744
B_{∞} of downstream sheet [T]	2.5	2.5	1.5	2.0	2.5	3.0	3.5

To satisfy constraints on the field magnitude B(z) and slope dB/dz at z = -0.5 m and z = L, one can adjust the energization level of coils. Only coil currents—not coil dimensions—are variables, so that solving for variables requires no iteration. Furthermore, for the designs of Fig. 1 only the interior coil is used to satisfy the requirement that B(L) = B_{min}. The upstream coil generates exactly 15 T without help for the downstream coils, which contribute only a few hundredth of a tesla at z = -0.5 m. The downstream current sheet is energized so as to generate exactly B_{min} deep in the interior of a coil of infinite length.

Field Profile of Target Magnets with $B_{min} = 1.5, 2, 2.5, 3 \& 3.5 T$ for z > 5 m

Fig. 1. On-axis field profiles generated by equations described in text above.

The field near z = 6 m is higher than desired by as much as 0.17 T (0.5 T for the design with only one downstream coil). The field profiles of Figure 7 reduce this field deviation by means of an additional coil and therefore a second adjustable current. The solution of two simultaneous linear equations suffices to determine the currents in the interior two coils that satisfy the constraints $B(z) = B_{min}$ at z = 5 m and at z = 6 m. The latter constraint is more robust than requiring dB/dz = 0 at z = 5 m.

B(z) of Target Magnets with $B_{min} = 1.5, 2, 2.5, 3 \& 3.5 T @ z = 5 m$

Fig. 2. On-axis field profiles generated by magnets with four current sheets. Currents i_1 and i_4 are fixed; i_2 and i_3 are adjustable. B(z) = B_{min} at z = 5 m; also B(6m) = B_{min}, a more robust constraint than dB/dz = 0 at z = 5m.

All the designs employ four current sheets with consecutive radii of [1.64, 1.00, 0.75, 0.60] m; coil ends are at [-2.35, 2.50, 5.29, 6.28] m upstream and $[1.34, 5.17, 6.18, \infty]$ m downstream. To make the total field 15 T at z = -0.5m), the upstream coil generates 14.97 T. To make the total field approximately B_{min} throughout the range 5 m to ~9 m, the downstream coil carries 94% the current that it would need if unassisted by the coils upstream.

Design Number	#1	#2	#3	#4	#5
Desired field (a) $z = L = 5 m$ [T]	1.5	2.0	2.5	3.0	3.5
B_{∞} of current sheet #2 [T]	0.918	1.536	2.153	2.770	3.387
B_{∞} of current sheet #3 [T]	1.226	1.802	2.377	2.953	3.528

The on-axis field *B* at location *z* generated by a current sheet of radius *a*, upstream end b_1 , downstream end b_2 , and carrying *i*' amperes per meter is the function

$$B(z) = \frac{1}{2}\mu_0 i' (b-z) [a^2 + (b-z^2)]^{-\frac{1}{2}}$$
 teslas

evaluated at $b = b_2$ minus its evaluation at $b = b_1$.

Define a function $B^{(0)}(x) \equiv x(a^2+x^2)^{-\frac{1}{2}}$, where $x \equiv (b-z)$. Similarly, define functions $B^{(n)}(x) \equiv (1/n!) d^n B^{(0)}/dx^n$. Then the Taylor series expansion of the field an increment Δ from z is the function

$$\frac{1}{2}\mu_0 i' [B^{(0)}(x) + B^{(1)}(x) \Delta + B^{(2)}(x) \Delta^2 + B^{(3)}(x) \Delta^3 + B^{(4)}(x) \Delta^4 + B^{(5)}(x) \Delta^5 + \dots],$$

evaluated at $x_1 \equiv (b_1-z)$ and subtracted from its evaluation at $x_2 \equiv (b_2-z)$.

Define $r = (a^2 + x^2)^{\frac{1}{2}}$. The first five terms in the series are:

$$B^{(1)}(x) = a^2 / r^3,$$

$$B^{(2)}(x) = -(3/2) a^2 x / r^5,$$

$$B^{(3)}(x) = -(1/2) (a^2 - 4 x^2) / r^7,$$

$$B^{(4)}(x) = (5/8) a^2 x (3 a^2 - 4 x^2) / r^9,$$

$$B^{(5)}(x) = (3/8) a^2 (a^4 - 12 a^2 x^2 + 8 x^4) / r^{11}$$

Figure 3 plots these functions with a = 1. To devote most of the graph to values of x less than unity, values greater than unity are transformed as $x = (2-u)^{-1}$, where u is the abscissa. The right-hand border of the graph, u = 1.8, transforms to x = 5.

The figure also plots the power-series coefficients for the function $B^{(0)}(x) = \tanh(x)$, which behaves much like $(1+x^2)^{-\frac{1}{2}}$. Its coefficients are:

$$B^{(1)}(x) = 1 / \cosh^2(x) ,$$

$$B^{(2)}(x) = -\sinh(x) / \cosh^3(x) ,$$

$$B^{(3)}(x) = -(1/3) [1 - 2 \sinh^2(x)] / \cosh^4(x) ,$$

$$B^{(4)}(x) = (1/3) [\sinh(x)] [2 - \sinh^2(x)] / \cosh^5(x) ,$$

$$B^{(5)}(x) = (2/15) [2 - 11 \sinh^2(x) + 2 \sinh^4(x)] / \cosh^6(x) .$$

Derivatives of Functions $x/(1+x^2)^{\frac{1}{2}}$ and tanh(x)

Fig. 3. Field and power-series coefficients of current sheet and function tanh(x), which behaves much like $(1+x^2)^{-\frac{1}{2}}$.