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Precision Timing via Cerenkov Radiation

Abstract

A simulation indicates that the rms timing, o, of 165-MeV /¢ muons could be determined
over a beam of 10-cm radius to 10 ps via Cerenkov radiation emitted in 1 x 1 cm? quartz
bars viewed by Hamamatsu R3809U microchannel-plate photomultipliers. The simulation
is validated by comparison with recent measurements with 1.5-GeV /¢ pions. This technique
would provide an excellent secondary timing measurement for the proposed muon-cooling
demonstration experiment, and nearly meets the requirements for the primary timing mea-
surement,.

1 Introduction

We have simulated the timing signal obtained when charged particles traverse a quartz bar,
emitting Cerenkov radiation which is detected by photomultipliers.

This work was motivated by the need for a timing measurement in the proposed muon
cooling experiment [1], in which all 6 phase-space parameters of individual, unbunched muons
are to be measured before and after cooling. Then any desired input bunch in muon phase
space can be formed in software and the effect of the cooling apparatus can be calculated
for the corresponding output bunch.

The most demanding measurement is that of the time ¢ of individual muons relative to
the phase of the 805-MHz rf in the linacs of the cooling apparatus. The time must be known
to 8 ps at the entrance and exit of the cooling channel. In the baseline scenario (Fig. 1)
[2], this is accomplished via rf-timing cavities which change the momentum of a muon by
an amount proportional to time offset between the muon and the null point of the field. By
measuring the momentum before and after the rf-cavity, the time offset can be obtained with
an estimated accuracy of g, = 6 ps. The extrapolation of this result from the position of the
rf cavity to the cooling channel increases the uncertainty to 8 ps.

However, this measurement of a time ¢ is ambiguous with time 7'/2 — ¢, where T is the rf
period. Thus, we need an additional timing measurement with oy < 7T'/8 ~ 150 ps to resolve
the ambiguity.

The second measurement together with that from the rf-timing cavity could serve to
distinguish muons from electrons and pions by time of flight, if the accuracy of the second
measurement satisfies o, < 50 ps [2]. Finally, if the second timing measurement has an
accuracy 0y < 6 ps, there might be no need for the rather costly rf-timing apparatus.

Kichimi et al. [3] recently reported rms time resolution, oy, better than 25 ps for the
detection of 1.5-GeV/c pions, using Hamamatsu H2431 fine-mesh PMT’s to view Cerenkov
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Figure 1: Sketch of the detectors used to measure all 6 phase-space coordinates
of a muon before it enters the proposed cooling apparatus [1].

light from quartz bars. This is less than one fifth of the nominal transit-time spread, ort =
160 ps, quoted for those PMT’s. Encouraged by this result, we desired to predict the time
resolution that could be obtained with faster PMT’s. For instance, Hamamatsu reports the
transit-time spread of their microchannel-plate photomultiplier (MCP-PMT) R3809U to be
as low as opr = 11 ps [4].

2 Simulated Scenario

Our simulation estimates the timing characteristics of Cerenkov photons due to a high-
energy particle passing through a quartz bar. Some of the photons will travel to the end of
the bar by total internal reflection (TIR), where they are detected with a specified efficiency
by photomultipliers. From analysis of the timing statistics of the observed photons for
various bar geometries and track angles, we can estimate the timing capabilities of such
configurations and optimize the detector parameters.

A run of the simulation consists of a given number of events, typically 500-5000, in each
of which the Cerenkov radiation from a single particle is analyzed. In a particular run of
the simulation, the particles all have the same energy and angle of incidence 6; (0° is normal
incidence) on a bar of thickness d, and all enter the bar at time ¢ = 0 at the same point at
distance z from the face of the photomultiplier along the axis of the bar.

The simulation is based on a Microsoft EXCEL worksheet that we obtained from Mats
Selen. Even though a single worksheet generally does not allow the iterative procedures



needed for a run of multiple events, we implemented these by writing scripts in Visual Basic
(VBA) that pass data between segments of a worksheet. Multiple runs, in which one or
more of the particles’ initial parameters are varied, were also processed iteratively in a single
EXCEL worksheet.

The number of Cerenkov photons radiated by the test particle in the quartz bar is cal-
culated according to

d 2ra . . dA
N = o Qi?/sm2 Oc dv = o i27roz/81n2 Oc VL (1)
where the Cerenkov-cone half angle is given by
1
1 _

Oc(X) = cos™ (2)

An(A)’
n(\) is the wavelength-dependent index of refraction (dispersion), § = v/c is the velocity
of the particle, a ~ 1/137 is the fine-structure constant, and dv (dA) is the frequency
(wavelength) interval over which the photons are detected. For example, n a2 1.47 in quartz
50 0o ~ 45° and N ~ 500/cm for the wavelength interval 300 < A < 600 nm. This number
is large enough that we ignore fluctuations in it.

A single event of the simulation proceeds as follows. N Cerenkov photons are generated
uniformly at random along the particle track within the quartz bar. The simulation does not
include é-rays, which are reported to contribute about one Cerenkov photon per cm of particle
track in quartz [3]. Each photon is assigned a frequency which is uniformly distributed at
random over a specified interval. The distances z’ between the point of emission of the
photon and the photomultiplier and d’ between the point of entrance of the particle and the
point of emission of the photon are also calculated.

The photons are emitted in a cone with halfangle 0-(\) to the particle track, uniformly
distributed at random in azimuthal angle. The photons are not tracked down the quartz bar
in detail. Rather, the initial direction cosines of each photon relative to the bar axes are used
to calculate whether the photon will be internally reflected at the faces of the quartz bar, and
those photons that are not reflected are disregarded. Photons not propagating towards the
photomultiplier are disregarded. The quartz bar is coupled to the photomultiplier through a
thin layer of material of index n’ = 1.40; a photon is disregarded if its direction is such as to be
internally reflected at this interface. The attenuation of light in the quartz is characterized by
a wavelength-dependent attenuation length A()), and a photon is disregarded by a random
selection with probability 1 — exp(—I/A), where | = 2'/cosf, is the actual pathlength of
the photon with direction cosine cos 6, in the quartz bar. The attenuation curve used in the
simulation is based on the transmittance of UV-grade quartz given in Fig. 2(top).

The response of the photomultiplier to photons which strike the photocathode is described
by wavelength dependence of the quantum efficiency QE(A), as shown in Fig. 3. A photon
is disregarded by a random selection with probability 1 — QE()).

Cerenkov photons passing the above cuts are considered to be detected, and the time of
detection is calculated as ¢t = d'/ + z'/[n(A) cos 0,]. The transit-time jitter of the PMT is
simulated by adding a Gaussian-distributed random time offset with standard deviation o1
to time ¢.

No simulation is made of the PMT output pulse shape.
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Figure 2: The transmittance of UV-grade quartz vs. wavelength for 1-cm-thick
samples, including the 8% reflection losses at the surfaces. Top: As reported
in the Melles-Griot catalog [5], which results were used in the present study.
Bottom: Suprasil fused silica from Hereaus [6], which can have somewhat
better transmittance than that reported by Melles Griot.

3 Photon Yield

As a first verification of our simulation, we compare the predicted number of photons detected
for a 1.5-GeV/c 7~ beam incident on a 2 x4 x 120 cm?® quartz bar with the results of Kichimi
et al. [3]. See Fig. 4.

The number of photons observed depends strongly on the pion’s angle of incidence 6;,
which changes the pion’s track length, as well as the conditions for internal reflection. The
1.5-GeV /¢ pions give rise to Cerenkov light at an angle ¢ = 47° to the pion’s track. The
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Figure 3: The wavelength dependence of the quantum efficiency used in the
simulation. The gentle dropoff at wavelengths below 400 nm occurs because
the semitransparent photocathode is too thin for full absorption of short-
wavelength photons [7]. The steep dropoff at wavelengths below 175 nm is
due to absorption in the glass face of the PMT.
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Figure 4: Observed [3] and predicted Cerenkov-photon yield for 1.5-GeV/c
pions incident on a 2 x 4 x 120 cm?® quartz bar. The number of observed
photons has a strong dependence on the angle of incidence, #;, as well as on
the short-wavelength cutoff A,.



critical angle for TIR at the quartz(n = 1.47)/air boundary is 43°. We therefore don’t expect
to observe Cerenkov photons for §; < —7°. (Some photons with nonzero azimuthal angle can
be captured by TIR when —7° < ; < —4°.) The photons observed with 6; < —7° are due
to é6-rays, and their timing-characteristics are not obvious. Yet, their effect on the overall
time resolution could only be an improvement, since they increase the overall amount of
time information per event. Since our simulation does not include é-rays, we should obtain
conservative estimates of the time resolution.

In the experiment by Kichimi et al., the main limitation on bandwidth in the low wave-
length range was the transparency of the borosilicate window on the photocathode (whose
effective detection range is 300 to 600 nm). In the simulation corresponding to that experi-
ment, we therefore impose a cut that excludes photons with wavelength shorter than A.;,.
Since the photons are uniformly distributed in energy (or frequency), there are more photons
in the short-wavelength range, and the photon yield is therefore very sensitive to the short
wavelength cutoff A\, By setting A, = 305 nm we obtain a good fit to the experimental
data after subtracting the contribution of about five photons/event from §-rays.

4 Time Resolution

The comparison of predicted time resolution against experiment provides another test of
our simulation. For the conditions used in the experiment of Kichimi et al., our simulation
predicts the Cherenkov photons to arrive in pulses characterized by a FWHM ranging from
9 ps (5-cm bar, §; = 40°, Fig. 5(top)) to 110 ps (115-cm bar, 6; = 0°, Fig. 5(bottom)).

Kichimi et al. obtained their timing signal by feeding the PMT output into a discriminator
“set at 50 mV, which corresponded to a few photoelectron signal” [3]. In our simulation, we
do not take the PMT output pulse shape into account. Since the predicted pulse width of the
arriving photons is short compared to the 0.7-ns rise time of the Hamamatsu H2431 PMT
used in the experiment, we make the approximation that the PM'T output that triggered
the discriminator corresponds to a fixed number of photons having arrived.

The uncertainty in the timing of a charged particle is therefore simulated as the un-
certainty in the arrival time of the nth arriving photon, where the number n remains to
be determined. For each event in the simulation, the arrival-times (smeared by the PMT
transit-time jitter) of all Cerenkov photons that satisfy the detector cuts are sorted in order
of increasing time and stored. After the run has been completed, we calculate the standard
deviation o0y, of the distribution of the nth arriving photon. Figure 6 shows the results with
and without PMT transit-time jitter for two different configurations, corresponding to the
best and worst timing cases in the experiment of Kichimi et al.

Even though the first photon generally has the least time jitter when it arrives at the
face of the PMT, the effect of the PMT transit-time jitter is such that one can obtain better
timing based on the arrival time of a later photon. This occurs whenever the transit-time
jitter opr of the PMT is large compared to the intrinsic time jitter o, of the earliest arriving
photon (not including the smearing by orr).

It appears that Kichimi et al. used the same discriminator threshold for all distances
z between PMT and particle track and all angles of incidence. Hence we must choose a
single value of photon-arrival number n in our simulation of all z and ;. We achieve a



1.6
Pulseshape after averaging 500 events. Z=5 cm,
1.4 40 degrees, no jitter
c 12 \
o]
a
10 1
o
2 08
m \
S
= 0.6 y
=
o
* 04
o MWW“M&WW“
0
O 4 N M < 10D © I 0 O O 4 N M < 1 ©
— N MO < IO O N~ 0 O 4 N M < 1 O~
i L T B B B o |
arrival time (ps)
0.9
lPulseshape after averaging 500 events. Z=115 cm,
0.8 / O-degrees, nojittet
0.7
c
o
n 0.6
o
o
~ 05
()
2 el
© 04 \M
2
203
s \W\V\A
H*+
02 UAAV\/LV\/'\WM
0.1 V/I\\I\VA"‘VAVAV “'AV\/A A WNJ\/\M\J\A
O L
o O O O O O O O O O O O O o o o
M O© O N I 0 dJd < ~ O M © O N W
< N M IO O© N~ O O «d MmO ¢ 1 © o O
U B B B B B T B |
arrival time (ps)

Figure 5. Simulated distributions of arrival times at the face of the PMT of
Cerenkov photons in 2 x 4 cm? quartz bars for 1.5-GeV/c pions incident at
5 em (top) and 115 em (bottom) from the PMT. Transit-time jitter is not
included.
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relatively good fit to the experimental data by choosing the 8th photon, as shown in Fig. 7
for three values of the PMT transit-time jitter. By choosing a later photon, we could improve
the simulated time resolution for a short quartz bar, but this would drastically worsen the
time resolution for a long bar. For the 115-cm quartz bar the time jitter seems to increase
exponentially with photon number for photons after the 5th. In order to reproduce time
resolution as good as 0, ~ 23 ps (reported for the 5-cm quartz bar at §; = 40°) for photon
number 8, we infer that the PMT transit-time jitter ot was 140 ps rather than 160 ps as
quoted by Hamamatsu.

5 Timing of 165-MeV /¢ Muons with MCP-PMT’s

Having calibrated our simulation against experimental data, we can estimate the time reso-
lution for a scenario that would be appropriate for the muon cooling experiment [1].

5.1 The New Scenario

The particles simulated are now 165-MeV /¢ muons, resulting in a nominal Cerenkov angle
Oc = 36° in quartz. The critical angle for total internal reflection at the quartz/air boundary
is 43°. Therefore, at normal incidence (f; = 0) all of the Cerenkov photons would be lost.
To avoid this, the quartz bar should be oriented at an angle to the nominal muon trajectory.
At 0; = 54°, for instance, part of the Cerenkov cone would be directed down the quartz
bar toward the PMT without any internal reflection, possibly leading to favorable timing
characteristics.

To achieve the best time-resolution possible with commercial PMT’s, we propose to
view the Cerenkov photons with Hamamatsu H3809U microchannel-plate photomultipli-
ers. Hamamatsu reports a transit-time spread of 25-ps FWHM [4] for these devices, which
corresponds to opr = 10.6 ps for a Gaussian transit-time distribution. Several recent exper-
iments indicate, however, that the FWHM transit-time jitter is more like 32 ps [8, 9, 10]. In
view of this ambiguity, we predict time resolutions for the cases of orr = 11 ps as well as
oTT — 13.5 Ps.

The useful photocathode diameter of the Hamamatsu H3809U is 11 mm. Using quartz
bars with a 1 X 1 cm cross section, the photocathode would cover 89% of the bar’s cross-
sectional area. We incorporate this in our simulation by disregarding each photon by a
random selection with probability 0.11.

The Hamamatsu H3809U is equipped with a quartz window, which has a wider region of
transparency than the borosilicate window of the PMT used in the experiments by Kichimi et
al. The low-wavelength dropoff is now dominated by the wavelength-dependent attenuation
in the quartz bar (Fig. 2), and the quantum-efficiency curve of the PMT (Fig. 3). By
using ultraviolet-grade quartz bars, we maximize our bandwidth and the number of detected
photons per muon.

10



5.2 Timing Device for the Muon Cooling Experiment

A possible configuration for a timing device is shown in Fig. 8. Since the time jitter increases
with bar length, the bars are arranged in two arrays each covering half the beam area. The
opening angle between the two halves corresponds to 180°—26;. Increasing 6; results in better
resolution due to more photons and more favorable TIR conditions. However, increasing 6;
increases the path length, and hence the attenuation, of the Cerenkov photons inside the
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Figure 8: Proposed timing device based on Hamamatsu R3809 MCP-PMT’s
viewing Cerenkov light from a muon beam of 10-cm radius hitting 1 x 1 c¢m?

quartz bars.

To determine the optimum opening angle, we simulated the time resolution for a range
of angles of incidence 6; with corresponding quartz bar lengths given by z = r/ cos 0;, where
r is the perpendicular distance from the beam axis to the PMT’s (in case of straight bars).
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Since the nominal beam radius in the detector sections of the cooling experiment is 10 cm,
r will need to be at least be 10 cm. In general, r will be greater than this, as needed to
array the PMT’s so as not to hit one another, as shown in Fig. 8. For our initial simulation
we chose 7 = 20 ecm, which gives us 10 em of radial space outside the beam to arrange the
photomultipliers.

5.3 Results

The predicted time resolution for the case r = 20 c¢m and various 6; can be seen in Table 1
assuming opr = 13.5 ps, and Table 2 for oprr = 11 ps. The optimum ordered-photon
number appears to be n = 2, and the optimum angle of incidence 6; seems to be around
45°, corresponding to an opening angle between the two detector arms of 90°. At this angle,
we predict an average of 60 detected photons per event, resulting in a time resolution of
o2 — 10 ps.

Fig. 9 shows the time resolutions oy, of the first 20 ordered photons for 0; = 45°,
r = 20 cm and various opr. Comparison of the upper two curves with the lowest curve,
which excludes PMT transit-time jitter, indicates that we are in fact approaching the intrinsic
time resolution of the device, estimated to be o, = 5.6 ps.

Std. dev. of arrival time of the first 10 photons,
28.3 cm bar, 45 degrees

30
—e—no jitter
25 —=— PMT jitter = 13.5 ps
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Figure 9: Standard deviation o0y, of arrival time of the first 10 photons for
the timing device of Fig. 8 with opening angle 90°, various transit-time jitters,
and r = 20 cm.

Since the standard deviation of the photon arrival times seem to increase linearly with
quartz-bar length (Fig. 7), there is a large potential advantage in reducing r by arranging
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Table 1: Predicted time spread of arrival time (o.,) for the first 7 ordered
Cerenkov photons from 165-MeV /c muons for various quartz-bar lengths and
angles of incidence. The assumed PMT transit-time spread is ot = 13.5 ps.

; Bar Length Ttm

(deg) (cm) (ps)
n=1 n=2 n=3 n=4 n=5 n=6 n=7T

34 241 113 106 116 134 158 190 224
36 24.7 114 106 113 126 148 176  20.8
38 25.4 112 104 112 127 145 171 19.9
40 26.1 112 103 106 116 132 154 182
42 26.9 112 103 109 120 14.0 162 185
44 27.8 114 103 107 115 128 145 169
46 28.8 11.0 101 103 11.1 123 142 16.3
48 29.9 112 102 106 114 126 139 158
50 31.1 112 101 103 109 119 131 14.7
52 32.5 113  10.2 104 11.1 119 133 148
54 34.0 115 10.2 103 107 116 127 141
56 35.8 115 103 10,5 11.0 119 127 139
o8 37.7 116 103 106 11.0 11.8 127 13.7
60 40.0 11.8 10.7 10.7 11.1 11.8 126 135
62 42.6 12.1 106 105 108 114 120 128
64 45.6 12.1 109 107 110 114 121 12.9

the timing device somewhat differently. For instance, rather than having all quartz bars
stacked together in a single array, one could displace neighboring bars along the beam axis
so that the PMT’s no longer interfere. This would enable the PMT’s to be mounted only
a few cm outside the beam. Figure 10 shows that as r approaches 10 em (corresponding
to z = 14.1 cm on graph), the time resolution approaches 6-7 ps. However, some muons at
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Table 2: Predicted time spread of arrival time (o.,) for the first 9 ordered
Cerenkov photons from 165-MeV /c muons for various quartz-bar lengths and
angles of incidence. The assumed PMT transit-time spread is ot = 11.0 ps.

; Bar Length Ttm

(deg) (cm) (ps)
n=1 n=2 n=3 n=4 n=5 n=6 n=7T

34 241 10.0 9.5 105 125 152 186 222
36 24.7 9.9 9.4 102 118 143 171 206
38 254 10.2 9.7 105 120 139 164 195
40 26.1 9.8 9.2 9.8 11.1 13.0 157 188
42 26.9 9.9 9.1 100 11.2 128 151 176
44 27.8 9.9 9.2 9.7 109 124 142 168
46 28.8 10.1 9.3 9.8 108 124 141 16.3
48 29.9 9.8 9.3 9.8 107 122 137 155
50 31.1 9.9 9.2 9.7 105 11.7 132 147
52 32.5 10.0 9.5 9.7 105 11.5 128 145
54 34.0 10.2 9.5 9.7 106 11,5 128 141
56 35.8 10.1 9.4 9.5 103 11.3 124  13.7
o8 37.7 10.3 9.4 9.9 105 11.3 123 133
60 40.0 10.4 9.6 9.9 105 11.3 123 133
62 42.6 10.8 9.9 100 105 112 121  13.0
64 45.6 114 103 104 106 11.1 11.8 126

large angles to the beam might pass through the a sparsely arrayed timing device without
hitting any quartz bar.

Note also that timing of muons away from the beam center would be somewhat better
than that of muons at beam center which are assumed in the cases above.

14
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Figure 10: Standard deviation of arrival time oy 3 of the 3rd photon for the
detector of Fig. 8 with opening angle of 90°, various transit time-jitters, and
bar lengths z = r/ cos(45°) for r = 10, 15 and 20 cm.

6 Discussion/Conclusion

Our simulation predicts that a device similar to that in Fig. 8 could measure the arrival
time of muons over a beam of 10-cm radius with an accuracy of o, = 10 ps. This result is
extremely encouraging, and suggests that a beam test be performed to verify it.

In the near future, we will add discussion as to the choice of algorithm for best timing,
comparing nth-ordered-photon timing to algorithms that include time averaging. Analytic
expressions for many aspects of nth-ordered photon timing will be presented.
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